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Abstract
The equations of motion of constrained mechanical systems form a class of differential-algebraic equa-
tions (DAEs)

M(q)q̈ = f(q, q̇,λλλ )−G>(q)λλλ , (1a)

0 = g(q) (1b)

that has found much interest in applied and numerical mathematics. In multibody dynamics, the variables
q(t) ∈ Rk describe the position and orientation of all bodies. The dynamical equations (1a) are charac-
terized by the mass matrix M(q), the force vector f(q, q̇,λλλ ) and the constraint forces −G>(q)λλλ with
Lagrange multipliers λλλ (t) ∈ Rm that couple m≤ k holonomic constraints g(q) = 0 to the equilibrium
conditions for forces and momenta, G(q) := (∂g/∂q)(q).
In 1989, Hairer, Lubich and Roche [1] introduced the perturbation index to classify DAEs w.r.t. “the
sensitivity of the solutions to perturbations in the equation” and proved that (1) has perturbation index 3
if M(q) ∈ Rk×k is symmetric, positive definite and G(q) ∈ Rk×m has full rank. In 1995, we refined this
analysis and developed A perturbation analysis for the dynamical simulation of mechanical multibody
systems [2] that considers functions q̂(t), λ̂λλ (t) satisfying (1) up to some (small) residuals δδδ (t), θθθ(t):

M(q̂) ¨̂q = f(q̂, ˙̂q, λ̂λλ )−G>(q̂) λ̂λλ +δδδ (t) , (2a)

θθθ = g(q̂) . (2b)

Differentiating the algebraic equations (1b) and (2b) twice, we get systems of linear equations in q̈, λλλ ,
¨̂q and λ̂λλ that may be solved to get a bound for λ̂λλ (t)−λλλ (t) in terms of q̂(t)−q(t), ˙̂q(t)− q̇(t), δδδ (t) and
θ̈θθ(t). The critical case are high frequency perturbations θθθ(t) = ε sinωt with small amplitude ε � 1 that
may result in very large errors λ̂λλ (t)−λλλ (t) of size O(1)‖θ̈θθ(t)‖= O(εω2).
For the direct time discretization of (1) by Runge-Kutta methods, multi-step methods and methods of
Newmark type, we observe a similar amplification of small constraint residuals also in the numeri-
cal solution. For a method with time step size h and (small) constraint residuals θθθ n = g(qn), we get
‖λ̂λλ n−λλλ n‖= . . .+O(θ/h2) with θ := maxl ‖θθθ l‖, i.e., an amplification of constraint residuals by a fac-
tor of 1/h2. The corresponding error bounds for the solution components qn and q̇n are much smaller
and depend on the structure of the force vector f in (1a). For systems with f = f(q, q̇), we get, e.g., error
bounds of size O(θ)+O

(
(θ/h)2

)
for the position coordinates qn and of size O(θ/h) for the velocity

coordinates q̇n, see [2, Theorem 7].
An interesting detail of this consistent perturbation analysis for analytical and numerical solution is its
invariance w.r.t. algorithmic details like, e.g., scaling strategies for the corrector iteration in implicit
time integration methods [3]. More precisely, we will show that the error bounds are optimal w.r.t. the
physically relevant variables q(t), q̇(t) and λλλ (t) in (1). Furthermore, the perturbation analysis will be
extended to equations of motion with a more complex structure including systems with non-holonomic
constraints, systems with rank-deficient but positive semi-definite mass matrix M(q) being positive def-
inite on ker G(q) and systems having a nonlinear configuration space with Lie group structure.
From the practical viewpoint, the error terms of size O(θ/h2) in λλλ n may be ignored if the main interest
is in the solution trajectory q(t) at the level of position coordinates and the time step size h > 0 is not
too small. On the other hand, Lagrange multipliers λλλ and constraint forces −G>(q)λλλ may be important
output quantities to be used, e.g., as inputs for a durability analysis. In that case, more robust numerical
schemes have to be used that are based on analytical transformations of the equations of motion (1)
before time discretization (index reduction [1]).
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Figure 1: Global error of a generalized-α DAE Lie group integrator, Heavy top benchmark.
Left plot: index-3 formulation, right plot: stabilized index-2 formulation.

Advanced general purpose solvers in industrial multibody system simulation packages make use of the
hidden constraints at the level of velocity coordinates v(t) := q̇(t). These hidden constraints result from
differentiation of 0 = g

(
q(t)

)
w.r.t. t : 0 = (d/dt)g

(
q(t)

)
= (∂g/∂q)

(
q(t)

)
q̇(t) = G

(
q(t)

)
v(t) . The sta-

bilized index-2 formulation (also known as Gear-Gupta-Leimkuhler formulation) of the equations of mo-
tion [1] considers the hidden constraints as well as the original holonomic constraints (1b) and introduces
a new vector ηηη(t) ∈ Rm of auxiliary variables in the kinematic equations q̇ = v :

A(q)(q̇−v) =−G>(q)ηηη , (3a)

M(q)v̇ = f(q, q̇,λλλ )−G>(q)λλλ , (3b)

0 = G(q)v , 0 = g(q) . (3c)

The stabilized index-2 formulation (3) is analytically equivalent to the original equations of motion if
matrix A(q) in (3a) is non-singular. Formally, the auxiliary variables ηηη vanish identically (ηηη(t)≡ 0) but
in a practical implementation they remain in the size of discretization errors. Similar results are obtained
for the stabilized index-2 formulation of equations of motion with nonholonomic constraints [1].
The main benefit of the index reduced formulation (3) is an improved robustness w.r.t. small perturba-
tions [2]: The error bounds for the Lagrange multipliers are of size O(1)‖θ̇θθ(t)‖ for the analytical solu-
tion λλλ (t) and of size O(θ/h) for the numerical solution λλλ n, i.e., they are smaller by a factor of h than
the ones for the original index-3 DAE (1). The numerical test results in Fig. 1 illustrate that stabilized
index-2 integrators compute often a substantially more accurate numerical solution λλλ n.
The present contribution considers the efficient implementation of time integration methods for the sta-
bilized index-2 formulation (3). Classical index-3 integrators define the numerical solution in time step
tn→ tn+1 by corrector equations of dimension k+m in terms of the unknowns qn+1 ∈ Rk and λλλ n+1 ∈ Rm,
see, e.g., [3, Section 4]. For the stabilized index-2 formulation (3) with A(q)≡ Ik, the dimension of the
corrector equations increases to k+2m with unknowns qn+1, λλλ n+1 and ηηηn+1. Alternatively, matrix A(q)
could be set to A(q) := M(q) to get two systems of dimension k+m that may be solved efficiently using
one and the same approximation of the Jacobian in the Newton-Raphson iteration. We will generalize
this approach in a consistent way to equations of motion with rank deficient mass matrix M(q).
All results are verified by practical implementations of (implicit) Runge-Kutta methods, BDF and New-
mark type methods. Easy-to-use plug-ins are developed for the open source Runge-Kutta code RADAU5
and the open source BDF code DASSL to support their straightforward application to the stabilized
index-2 formulation (3). The implementation of a stabilized index-2 generalized-α integrator may fur-
thermore be applied to equations of motion in nonlinear configuration spaces with Lie group structure.
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