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Abstract 

This work refers to a weak formulation of the equations of motion for a class of mechanical systems, 
providing a reliable basis for an efficient numerical determination of their dynamics. The position of 

these systems is specified by a finite number of generalized coordinates, 1
, ,

n

q q… , at any time t  [1]. 

Their motion can then be viewed as motion of a point, say p , along a curve ( )tγ γ=  in an n -

dimensional configuration manifold M . Moreover, the tangent vector v d dtγ=  to this curve 

belongs to an n -dimensional vector space 
p

T M , the tangent space at p  [2]. At every point p , one 

can define another vector space, the dual or cotangent space to 
p

T M , denoted by 
p

T M
∗ . Also, for any 

vector u  in 
p

T M , a covector u∗

ɶ
 may be identified in 

p
T M

∗  by the dual product 

( ) , ,
p

u w u w w T M
∗

≡ 〈 〉 ∀ ∈
ɶ

, (1) 

where ,〈⋅ ⋅〉  denotes the inner product of vector space 
p

T M . In this way, to each basis { }
i
e  (with 

1, ,i n= … ) of 
p

T M , a dual basis { }
i
e

ɶ
 can be established for 

p
T M

∗  by employing the condition 

( )
i i

j j
e e δ=
ɶ

. (2) 

In addition, the class of systems examined is subjected to a set of k  motion constraints with form 

( ) 0A q v = , (3) 

where v  is a vector in 
p

T M  and [ ]
R

i
A a=  is a known k n×  matrix. Considering each of the resulting 

scalar equations separately, these constraints can be set in the dual product form 

( , ) ( ( ))( ) 0
R R
q v a q vψ ≡ =ɺ

ɶ
, ( 1, ,R k= … ), (4) 

where ( )
R

a q
ɶ

 is the R -th row of ( )A q . When the constraint is holonomic, this can be integrated to 

( ) 0
R
qφ = .  

Based on the above, the equations of motion of the class of systems examined can be put in the form 
* *

M C
h h=
ɶ ɶ

 (5) 

on the configuration manifold M  [3], with 
*

[( ) ]
j m j i

M i j i m j ih g v g v v f e= − Λ −
i ℓ

ℓ

ɶ ɶ
  and  *

1
[( ) ]

k R R R R i

C RR RR RR R iR
h m c k f a eλ λ λ

=

= + + −∑
iɺ ɺ

ɶ ɶ
, (6) 

where the usual convention on repeated indices applies to all indices, except R . The quantities Rλ  are 

appropriate Lagrange multipliers, while the quantities 
i j
g  and i jΛ

ℓ  represent the components of the 

metric and the connection on manifold M . The coefficients 
RR
m , 

RR
c , 

RR
k  and 

R
f  represent an 

equivalent mass, damping, stiffness and forcing quantity, obtained through a projection along a special 

direction on 
p

T M , specified by the action of the R -th constraint [3]. Finally, for each holonomic or 

nonholonomic constraint, Eq. (5) is complemented by an ordinary differential equation with form 

( ) 0
R R R

RR RR RR
m c kφ φ φ+ + =

iɺ ɺ    or   ( ) 0
R R

RR RR
m cψ ψ+ =

i

ɺ ɺ , (7) 

respectively. Taking into account the set of equations of motion (5), one can first write 
2

1

* *
( )( ) 0,

t

M C p
t

h h w dt w T M− = ∀ ∈∫
ɶ ɶ

. (8) 

Also, for each holonomic constraint, as expressed by Eq. (7a), the following relation is satisfied 
2

1

[( ) ] 0
t

R R R R

RR RR RR
t

m c k dtφ φ φ δλ+ + =∫
iɺ ɺ , (9) 



for an arbitrary multiplier R
δλ , while a nonholonomic constraint equation can be treated in a similar 

manner. Moreover, in a weak formulation, it is advantageous to consider the position, velocity and 

momentum variables as independent quantities [4]. For this, two new velocity fields, υ  and µ , are 

introduced, which are eventually forced to become identical to the true velocity fields v  and λɺ . To 

achieve this task, Eq. (8) should be augmented by the terms 
2

1

[ ( ) ( )]
t

i i i i

i i
t

v v dtπ δυ δ δπ υ− + −∫    and   
2

1

[ ( ) ( )]
t

R R R R

R R
t

dtσ δµ δλ δσ µ λ− + −∫ ɺ ɺ , (10) 

where the quantities 
i

π  and 
R

σ  represent new sets of Lagrange multipliers. The quantities 
i

δπ  and 

R
δσ  represent components of covectors belonging to the same cotangent space as the covectors with 

components 
i

π  and 
R

σ , respectively, but other than that have no relation to them.  

Finally, appending Eqs. (9) and (10) to Eq. (8) yields the weak form of the equations of motion for the 
class of systems examined as a three field set of equations. This form is convenient for performing an 
appropriate numerical discretization, leading to improvements in existing schemes [5, 6]. In particular, 
for the purposes of the present work, this form was put within the framework of an augmented 
Lagrangian formulation. The success of this formulation is demonstrated by the efficient solution 
obtained for challenging benchmark problems [7]. Results from such an example are shown in Fig. 1. 
 

  

  
 Figure 1: Numerical results for a planar slider-crank mechanism (a) position of point P2,           

(b) mechanical energy error, (c) angular velocity of rods, (d) angular velocity of moving piston. 
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