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Abstract 

In dynamics of the multibody systems, the selection of coordinates is important. Different types of 

coordinate systems are available for dynamic formulation and have their own advantages and 

disadvantages. The dynamic formulation of multibody systems based on natural and joint coordinates 

was done using velocity transformation in [1]. The equations of motion can be formulated easily in 

large number of natural coordinates (absolute accelerations), however the drawback is the large 

number of mixed differential-algebraic equations. The numerical solution of these equations is 

computationally inefficient. On the other hand, the dynamic formulation using the relative coordinates 

is cumbersome, while they are computationally efficient. Further, the extra effort is required for the 

computation of the absolute positions, velocities, and accelerations of the multibody systems. A 

systematic method to derive the minimal set of equations of motion was presented in [2]. The equation 

of motion was written first in dependent coordinates, then velocity transformation matrix was used to 

derive the minimal set of equations of motion. 

Note that an efficient recursive dynamic formulation, using the DeNOC matrices was developed in [3]. 

This tempted us to develop a similar set of the DeNOC matrices relating the time-derivatives of the 

natural coordinates and those of the relative coordinates to obtain a set of required independent 

equations of motion. The dynamic formulation of two link serial manipulatoris is presented in this 

paper. A relationship between the natural and relative coordinates was developed at velocity level. We 

believe that this yields in minimal set of differential equations of motion and provide an efficient 

numerical solution. In the full paper, we shall develop a transformation matrix for the four-bar 

mechanism and 3-RRR parallel manipulator and compare the results in terms of efficiency and 

accuracy. 

Methodology 

The two link serial manipulator is shown in Fig. 1. The generalized equation of motion using the 

Lagrange formulation can be written in terms of natural coordinates as  

 𝐈n𝐯̇ + 𝐉Tλ = ∅ (1) 

 Where (𝐈n) is the generalized inertia matrix (GIM) in natural coordinates, 𝐉 is the constraint Jacobian 

matrix, λ is the Lagrange multiplier, ∅ is the generalized force vector, and 𝐯 is the vector of linear 

velocities of the joints. The 4 × 4 GIM is given by 
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The kinematic relation between the natural and relative coordinates is given below: 

 
𝐯1 = [

ẋ1

ẏ1
] = 𝐜̇1 + 𝛚1 × 𝐫1 = [−𝐫1 × 𝟏 𝟏] [

𝛚1

𝐜̇1
] (3) 



 
𝐯2 = [

ẋ2

ẏ2
] = 𝐜̇2 + 𝛚2 × 𝐫2 = [−𝐫2 × 𝟏 𝟏] [

𝛚2

𝐜̇2
] (4) 

Then, 
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Figure 1: Two link serial manipulator. 

The equation (5) can be written in compact form as given below: 

 𝐯 = 𝐑𝐭 (6) 

From [3], we have twist vector 𝐭 = 𝐍l𝐍d𝛉̇, therefore the above can be written as 𝐯 = 𝐑𝐍l𝐍d𝛉̇, and in 

compact form 𝐯 = 𝐓𝛉̇, where 𝐓 = 𝐑𝐍l𝐍d, which gives 𝐯̇ = 𝐓̇𝛉̇ + 𝐓𝛉̈. Put the value of the 𝐯̇ in eq. (1), 

and pre-multiply the transpose of T to the both side of eq. (1). This operation transforms the equation 

of motion in relative coordinates. The generalized form of equation of motion for the serial chain 

manipulator in relative coordinates is given below: 

 𝐈r𝛉̈ + 𝐂𝛉̇ = 𝛕 (7) 

Where (𝐈r) is the GIM in relative coordinates, 𝐂 is the matix of convetive inertia and 𝛕 is the 

generalized force vector. The transformed expression in relative coordinates for the GIM is given 

below: 
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 (8) 

In the full paper, numerical results will be presented.  
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