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Abstract
We analyze several methods to solve the equations of motion (EOM) associated with the dynamics of
rigid bodies that interact through contact and friction. We rely on a Differential Variational Inequality
(DVI) approach to solve the EOM using three different formulations of the DVI problem: the primal
[1, 2], dual [3], and generalized. Several benchmark tests are used to provide insights into the pitfalls
and artifacts associated with these formulations and their numerical solution. The goal is to understand
how several solvers: e.g., Mosek [4], PATH [5], Accelerated Projected Gradient Descent (APGD) [6],
Jacobi and Gauss Seidel, perform in conjunction with these three formulations. At a high level, the
primal formulation first solves for body velocities and subsequently recovers the remaining unknown
quantities such as the frictional contact force. The dual formulation goes the opposite way: it solves
for the frictional contact forces first and proceeds to recover the rest of the solution unknowns. The
generalized formulation solves for all unknowns in one fell swoop.
The testing infrastructure utilized relies on Matlab, the General Algebraic Modeling System (GAMS) [7],
and a C++ library called Chrono [8]. The GAMS modeling language supports modeling Second Order
Cone Programs (SOCP), which are used by Mosek in conjunction with the primal formulation. APGD
solves for the rigid body dynamics with frictional contact by concentrating on the dual formulation.
Additionally the EOM can be directly modeled using the GAMS Extended Mathematical Programming
(EMP) framework, which automatically forms the KKT conditions associated with the DVI problem
and then uses the PATH solver to find a solution. In this “generalized” formulation the reduction of the
discretized EOM to a smaller problem, which is the strategy adopted for the primal and dual formulations,
is completely bypassed. While convenient to pose, the generalized formulation leads to large and highly
nonlinear problems that are challenging to solve and significantly less efficient.

Preliminary Results
Several benchmark tests that we will report on indicate that both Mosek and APGD, which implement the
primal and dual formulations, respectively, converge to similar objective function values in similar times.
The simulation results proved rather sensitive for the dual formulation – for instance, small changes in
the number of spheres in a “pile of bodies at rest” simulation resulted in large changes in the objective
value. In such cases the number of iterations required to converge for APGD varied greatly while Mosek,
which is a primal dual interior point method, consistently converged within the same number of iterations
and wall clock time. The PATH solver, used herein to implement the generalized formulation, provided
results similar to APGD and Mosek in terms of velocities and reaction impulses for contacts yet its
performance scaled poorly, see Figure 1.
The relaxation of the nonlinear complementarity problem (NCP) to a cone complementarity problem
(CCP) embraced in the dual formulation, implemented here using the AGPD solver, introduces numerical
artifacts at high friction and/or sliding velocity. This is demonstrated using a simple test with a 3D rigid
ball sliding on the ground with an initial velocity of −2 m/s in the x direction. It has a radius of 1 m
and the contact has a friction value of µ = .2. The ball, which is initially sliding, slowly begins to roll
due to friction and eventually gets into a steady state rolling motion. The time it takes to get to this state
is trolling = 2v0

7µg [9]. For an initial velocity of 2 m/s and g = 9.81m/s2, the ball will be fully rolling at
trolling = .291s. A numerical integration step size of h = 0.0025s was used to capture these dynamics.
Figure 2 shows results obtained with both the relaxed and non-relaxed methodologies and displays an
artifact in the high sliding regime for the dual formulation. As expected, these artifacts are due to the
relaxation that transforms the NCP into a numerically less challenging CCP.



Figure 1: Left: Convergence behavior of APGD and Mosek. The latter initially increases the objective
function value before converging to the correct solution. Note that the absolute value of the objective
function is used and shown on a log scale. Right: Scaling analysis of APGD, Mosek and PATH for a
problem with spheres filling a container (stacking problem). The number of spheres was increased to
lead to an increasingly larger number of contacts.

Figure 2: Comparison of different formulations showing how the relaxation that transforms the NCP into
a CCP creates artifacts when two bodies in contact are sliding with friction.
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