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Abstract
Topology optimization has been successfully applied to optimize members of flexible multibody systems.
For instance, using the floating frame of reference approach, topology optimization procedures have
been proposed and tested by [1, 2, 3]. In this formulation, the linear deformation of an elastic body in a
multibody system is described with respect to a body-related frame and the large rigid body motions are
described by the non-linear motion of this frame. Therewith, the position vector of a point on the flexible
body is determined by the sum of rigid motion and the linear deformation up. The deformation uP is
approximated by a time-independent matrix of shape functions ΦΦΦ and time-dependent elastic coordinates
q as

uP(RP, t) = ΦΦΦ(RP)q(t) (1)

where RP is the position vector in the body-related frame. Writing the equations of motion in minimal
coordinates, as explained in [7] and rearranging them, a time-variant equivalent force feq is obtained
which includes all the dynamic loads applied to the flexible bodies

Keeq(t) = feq(t). (2)

Thereby, Kee is the stiffness matrix of the generalized elastic coordinates. Equation (2) can be solved for
a finite number of time points to obtain a set of deformation fields

ui = ΦΦΦ(RP)qti = ΦΦΦ(RP)K−1
ee feq,ti , i = 1,2, ...,m. (3)

Here, ti is the i-th time point and m is the total number of load cases.
In the integration of flexible bodies in a multibody system it is necessary to model the interfaces with
other connected bodies. In the previous studies [2, 3], due to the simplicity of implementation, the flexible
body is connected to the interface nodes by means of truss elements or rigid elements. In this approach,
the joint area is considered as ground structure, i.e. excluded from the optimization. However, using
this joint model, no information will be provided regarding the optimized shape of joints. In addition,
inclusion of joints in the optimization domain affects the rest of the structure. This influence is noticeable
in Figure 1 and Figure 2 where adding the flexible joint has changed the optimized design in the rest of
the structure.
Therefore, accurate modeling of joints is not only important for knowing the optimal design of joint
area, but also for increasing the accuracy of the optimized structure in general. This generates a strong
motivation for examination of joints in topology optimization of a multibody system where joints as the
connecting elements between bodies of the system are intrinsically ubiquitous.
A simple ideal revolute joint is implemented in the optimization of flexible multibody systems, presented
in [4]. Here, linear truss elements are used to model the revolute joints in the topology optimization of a
slider-crank mechanism. For an ideal joint it is assumed that there are no clearance and no relative sliding
between the journal and the bearing. The ideal model allows the use of model order reduction techniques

0

Figure 1: Optimized structures with rigid interface area (left)
and rigid bearing (right)

Figure 2: Optimized structure using
flexible joint.



which facilitates the dynamic simulation of the slider-crank mechanism with flexible bodies. However,
the ideal model fails to represent the exact behavior of revolute joint in the presence of clearance between
the moving parts. This is shown in Figure 1 where an unrealistic solution is generated by the optimization
in which the ideal joint model is used. The assumption that the clearance is zero and that no sliding
occurs between the two contact surfaces, enables the structure to be connected to the journal through
one or multiple separated surfaces. Moreover, studies on the dynamics of multibody systems with joints
show that the contact forces in the real joints are considerably higher than the ones predicted by ideal
joints, see [5, 6].
In the simulation procedure explained in Equations (1-3) it is not possible to implement a nonlinear
contact model since the approximation of deformation vector in Equation (1) is linear. However, by
introducing a corrector load fcor in each time step, it is possible to increase the accuracy of the ideal joint
model. This additional load is introduced as

fcor
i = fcon

i − fideal
i = fcon

i −Kūi, i = 1,2, ...,m. (4)

Here, the deformation vector ūi is equal to ui at interface degrees of freedom and is 0 elsewhere. The
additional joint loads fcon

i are calculated using the well-known Herz contact law in normal direction and
modified Coulomb law [5] in tangential direction. Including the correction loads of Equation (4) in
Equation (3) gives the new displacement vectors ûi

ûi = ΦΦΦ(RP)K−1
ee feq,ti +K−1fcor

i , i = 1,2, ...,m. (5)

Thereafter, calculation of objective function which in this work is the compliance of the flexible body is
straightforward

c =
m

∑
i=1

ûT
i Kûi. (6)

The application examples of a slider-crank mechanism and a two-arm manipulator are used to demon-
strate the effects of the correction loads on the accuracy of the joint modeling. Finally, the application
examples with modified linear joint model presented in this work are compared with a similar model in
ABAQUS where the contact forces are calculated using the penalty method.
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