Compatibility Equation and Revision on the Expression of Cord-line Component of Dynamical Cable Tension

Guo-Kang Er, Kun Wang, Vai Pan Iu

Department of Civil and Environmental Engineering University of Macau Macau SAR, China yb37402@umac.mo

Abstract

The problem in deriving the relation of the chord-line component of the dynamical cable tension and the deflections in the conventional cable theory is investigated. The expression for the relation of the chord-line component of the dynamical cable tension and the deflections is reasonably derived and improved by introducing a compatibility condition for three-dimensional vibrations of the cable. The difference between the chord-line component of the dynamical cable tension based on the conventional cable theory and the proposed compatibility equation are investigated for different sag-to-span ratios and inclined angles. It is found that the error caused by the conventional cable theory can be too large to be acceptable when the sag-span ratio or the inclined angle is large to some extent.

Consider the inclined suspended steel cable as shown in Figure 1 with mass per unit length being 4539.6kg/m, length between two supports being 1000m.

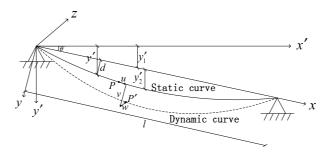


Figure 1: Inclined cable and its coordinate system.

If the cable is subjected to the external dynamic force $f_y(x,t)$ and $f_z(x,t)$ per unit length in y and z directions, respectively, three-dimensional equations of motion of the cable are easily obtained with h unknown, which is the chord-line component of additional cable tension induced by dynamical displacement. However, the conventional derivation of h is shown as follows, which is not theoretically based, because it made use of the average dynamical strain of the cable.

$$h = \frac{EA}{L_e} \int_0^l \left(y_x v_x + \frac{1}{2} v_x^2 + \frac{1}{2} w_x^2 \right) dx,$$
 (1)

where

$$L_e = \int_0^l \left(\frac{ds}{dx}\right)^3 dx = \int_0^l (1+y_x^2)^{\frac{3}{2}} dx.$$

After the compatibility equation of the change of the length of cable under dynamical deformation is formulated, the revised expression of h is given as,

$$h = \frac{EA}{L'_e} \int_0^l \left(y_x v_x + \frac{1}{2} v_x^2 + \frac{1}{2} w_x^2 \right) dx,$$
(2)

where

$$L'_e = \int_0^l \left(\frac{ds}{dx}\right)^2 dx = \int_0^l (1+y_x^2) dx.$$

The results of L_e and L'_e for different sag-span ratio are calculated numerically and compared as shown in Table 1 to Table 5. It is observed that if the inclined angle remains the same, the difference between L_e and L'_e becomes larger as the sag-to-span ratio increases. If the sag-to-span ratio remains the same, the difference between L_e and L'_e becomes larger as the inclined angle increases.

It can be seen from Table 1 that when the cable is suspended horizontally and the sag-to-span ratio is 1/4, the difference between L_e and L'_e reaches 18.45%, which is too large to be acceptable. From Table 5, it can be seen that when the inclined angle is 60° and the sag-to-span ratio is 1/10, the difference between L_e and L'_e could reaches about 5%. So the difference could significantly influence the responses of three-dimensional vibrations of the cable. The error caused by the conventional cable theory can be too large to be acceptable when the sag-to-span ratio or the inclined angle is large to some extent.

Table 1: Difference between L_e and L'_e for $\theta = 0^\circ$. Table 2: Difference between L_e and L'_e for $\theta = 15^\circ$.

			-	 			-
sag-span ratio	L_e	L'_e	$(L_e - L'_e)/L'_e(\%)$	sag-span ratio	L_e	L'_e	$(L_e - L'_e)/L'_e(\%)$
1/10	1085.34	1053.61	2.73	1/10	1046.6	1018.41	2.77
1/8	1130.72	1084.01	4.31	1/8	1095.07	1048.76	4.42
1/6	1240.27	1150.22	7.83	1/6	1208.42	1116.64	8.22
1/4	1590.94	1343.18	18.45	1/4	1613.65	1330.88	21.25

Table 3: Difference between L_e and L'_e for $\theta = 30^\circ$. Table 4: Difference betw

Table 4: Differ	ence betw	veen L_e	and L'_e	for θ	= 4	5°.

sag-span ratio	L_e	L'_e	$(L_e - L'_e)/L'_e(\%)$	sag
1/10	941.89	915.25	2.91	
1/8	991.42	945.91	4.81	
1/6	111.23	1021.08	9.81	
1/4	1819.06	1338.03	35.95	

sag-span ratio	L _e	L'_e	$(L_e - L'_e)/L'_e(\%)$				
1/10	777.17	752.22	3.32				
1/8	832.91	785.71	6.01				
1/6	1027.74	888.64	15.65				
1/4	5981.87	2067.58	189.32				

Table 5: Difference between L_e and L'_e for $\theta = 60^{\circ}$.

sag-span ratio	L _e	L'_e	$(L_e - L'_e)/L'_e(\%)$
1/10	572.12	545.19	4.94
1/8	672.36	599.19	12.21
1/6	2024.96	1017.46	99.02

References

- [1] H.M. Irvine, T.K. Caughey. The linear theory of free vibration of a suspended cable. Proceedings of the Royal Society A, Vol. 341, pp. 299–315, 1974.
- [2] A. Luongo, G. Rega, F. Vestroni. Planar non-linear free vibrations of an elastic cable. International Journal of Non-Linear Mechanics, Vol. 19, No. 1, pp. 39–52, 1984.
- [3] N.C. Perkins. Modal interactions in the non-linear response of elastic cables under parametric/external excitation. International Journal of Non-Linear Mechanics, Vol. 3, No. 6, pp. 465– 490, 1992.
- [4] F. Benedettini, G. Rega, R. Alaggio. Non-linear oscillations of a four-degree-of-freedom model of a suspended cable under multiple internal resonance conditions. Journal of Sound and Vibration, Vol. 182, No. 5, pp. 775–798, 1995.
- [5] K. Wang, G.K. Er. Modified equation of motion of cables and their nonlinear vibrations with small sag. Proceedings of the 8th European Nonlinear Oscillation Conference, Vienna, Austria, 2014.