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Variable topology mechanisms (VTM) form a class of mechanisms that can switch between different
kinematic topologies, and thus change their kinematic mobility and possibly their DOF. This property
is shared with kinematotropic mechanisms. The latter transit between motion modes via kinematic sin-
gularities while keeping their kinematic topology. VTM on the other hand change their mobility due to
switching constraints, respectively (bilateral) contacts. In this paper VTM with switching constraints are
considered that are referred to as quasi-scleronomic VTM.

The configuration space (c-space) of a holonomic quasi-scleronomic VTM is the time dependent variety
V := h−1 (q, t) defined by a system of quasi-scleronomic geometric constraints h(q, t) = 0 of the form

h(q, t) =


h1 (q) , t ∈ [t0, t1)
h2 (q) , t ∈ [t1, t2)
· · ·
hi (q) , t ∈ [ti−1, ti)

(1)

where the constraint switching occurs at ti. Each individual constraint hi (q) = 0 corresponds to a kine-
matic topology, and defines a variety Vi := h−1

i (q, t), where Vi∩Vj 6= /0, which is the c-space of the VTM
at topology i. A special class, with practical relevance, are VTM with regular topology changes due to
the activation of additional constraints. The quasi-scleronomic constraints can be expressed as

h(q, t) =


h− (q) := h1 (q) , t < 0

h+ (q) :=
(

h1 (q)
h2 (q)

)
, t ≥ 0

, J(q, t) =


J− (q) := J1 (q) , t < 0

J+ (q) :=
(

J1 (q)
J2 (q)

)
, t ≥ 0 .

(2)

Here h1 (q) = 0 is a set of persistent constraints to which another set of constraints h2 (q) = 0 is added at
t = 0.

A topology change at time t0 with configuration q0 (t0) ∈V1∩V2 is regular iff q0 is a regular point of V1
and of V2, i.e. the VTM does not encounter a singularity during the topology change. Topology variations
are accompanied by non-smooth transitions between different motion modes, i.e. discontinuous system
trajectories. This is a challenge for the numerical simulation as well as for model-based control that has
been addressed in [1],[2] for instance.

In this paper a momentum consistent formulation for the forward dynamics of VTM exhibiting regular
topology changes, and a momentum consistent time stepping scheme is presented.

Suitable Form of Motion Equations: Starting from Gauß’ principle, with the acceleration constraints
Jiq̈+ J̇iq̇ = 0 corresponding to hi (q) = 0, the equations of motion (EOM) governing the VTM dynamics
on Vi are

q̈ =M−1 (q)NT
Ji,M
(
u(q, t)−C(q̇,q) q̇−Q(q̇,q, t)

)
−J+i,M (q) J̇iq̇ (3)

with J+i,M being the M-weighted right pseudoinverse of Ji, and NJi,M = I− J+i,MJi is the corresponding
projector to the null-space of Ji. This formulation is free of Lagrange multipliers while it does not
require selection of independent (minimal) coordinates, as the common minimal coordinate formulations
for constrained MBS do. The system (3) can be rewritten as [3]

NT
Ji,M
(
M(q) q̈+C(q̇,q) q̇+Q(q̇,q, t)−u(q, t)

)
= 0. (4)

This is not directly applicable to forward dynamics simulation, as it is a system of n equations of which
only n−m are independent, since rank NJ,M = n−m, but it gives rise to a tailored momentum balance
condition.



Momentum Balance: Assume that the switching occurs at t = 0, and denote the corresponding con-
figuration with q0 := q(0). The balance of generalized momentum of a VTM subjected to the quasi-
scleronomic constraints (2) can be derived as

M(q0)∆q̇+NT
J1,M (q0)JT

2 (q0)Λ+dt = U(q0) (5)

where ∆q̇ := q̇+− q̇− is the velocity jump, Λ+ :=
∫

ε

0 λdt is the impulsive constraint force after the event,
and U(q0) =

∫
ε

−ε
u(q0, t)dt is an impulsive applied force during the event.

Kinematic Compatibility: The persistent constraints can be written as J1 (q0) q̇+−J1 (q0)∆q̇ = 0, and
the additional constraints for t ≥ 0 as J2 (q0)∆q̇+J2 (q0) q̇− = 0. These can be combined to

J2 (q0)NJ1,M(q0)∆q̇ =−J2 (q0) q̇−. (6)

Overall Transition Condition: The momentum balance together with the kinematic compatibility con-
ditions can be summarized as(

M(q0) NT
J1,M (q0)JT

2 (q0)

J2 (q0)NJ1,M(q0) 0

)(
∆q̇
Λ+

)
=

(
U(q0)

−J2 (q0) q̇−

)
. (7)

The special case of MBS only subjected to a set of constraints that is activated at t = 0 is included with
NJ1,M = I. The so determined ∆q̇ is the admissible velocity jump such that the momentum balance and
the constraints before and after the event are satisfied. As a by product, the impulsive constraint force
Λ+ due to the event is determined.

The system (7) is invoked within numerical time stepping schemes to determine the velocity jump at the
switching point. To this end the system trajectory is numerically determined until the switching event,
providing the velocity q̇− prior to the event and the configuration q0 ∈V .
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Figure 1: Metamorphic
Hand with reconfigurable
palm. [Courtesy of Prof.
Jian Dai]

It is only necessary to solve (7) at the switching event, which does not
intrude the numerical integration. Moreover, any dynamics formulation
(absolute or relative coordinates) and integration scheme can used. The
compatibility condition (7) yields the full (redundant) state of the system,
from which any desired set of coordinates can be selected, e.g. minimal
coordinates. The impulsive force U(q0) can possible substituted by a con-
tact model. The method is easily extended to account for non-holonomic
velocities v according to v = A(q) q̇.

The method has been applied to several VTM examples that will be pre-
sented. Such an example is the metamorphic hand in Fig. 1. that has been
reported in [4]. The particular feature of this hand is its palm. The palm
consists of a spherical 5-bar linkage imitating the inherent mobility of the
human hand. The latter is actuated by two motors. As humans do, the
palm can be folded so to essentially collapse. This is achieved by locking
the drive 1, thus reducing its DOF and so changing the kinematic topology.
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