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Abstract
In railroad dynamics, an accurate prediction of the wheel-rail contact geometry is one of the most essen-
tial issues for evaluating vehicle stability, curve negotiations or ride comfort. In addition, if this prediction
were an on-board one, a great reduction of railroad maintenance costs could be achieved allowing every
vehicle body the possibility to check online track irregularities. To this end, this paper shows a partial
linearization of multibody equations of motion applied to a multibody model of the scaled railroad vehi-
cle of Fig. 1a for on-board simulations on arbitrary tracks. The equations of motion of Eq. (1) are first
symbolically obtained as a transformation of the Newton-Euler equations of the vehicle bodies which are
referred to a track frame (TF) that accompanies the vehicle [1]. These equations take the form

M(q) q̈+CT
qλ = Q

C(q, t) = 0 (1)

where M is the mass matrix, Cq is the jacobian matrix of the constraints vector C, λ is the vector
of Lagrange multipliers, Q is the vector of generalized forces that includes gravity, suspension, and
quadratic in system velocities forces, and q̈ is the accelerations of the system generalized coordinates q.
Equation (1) can be expressed in terms of independent coordinates qind [2]. When these contraints are
not explicit function of time (scleronomic constraints), matrix B relates the velocities of the generalized
coordinates to the independent ones as q̇ = Bq̇ind. Thus, Eq. (1) can be written as f(q̈ind, q̇ind,qind) = 0
to then, symbolically be linearized respect to an equilibrium position qstd such as

Mlin(stf)q̈ind +Clin(stf)q̇ind +Klin(stf)qind = γγγstd (2)

In Eq. (2), Mlin, Clin and Klin are the linearized mass, damping and stiffness matrices as functions of the
TF arc length stf, and γγγstd is the vector that contains the terms related to the equilibrium position.
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Figure 1: (a) Scaled railroad vehicle. (b) Kinematics description of a wheelset

Wheel-rail contact constraints are treated with precalculated lookup tables which can take into account
the track irregularities as in [3] and consequently, five different types of reference frames are used for the
kinematic description of railroad vehicle bodies as it can be seen in Fig. 1b. As generalized coordinates
are referred to the TF, a body track frame (BTF) must be identified for every wheelset in which the lookup



table is used. In addition, to avoid the wheelset pitch rotation when obtaining the location of the contact
points, a wheelset intermediate frame (WIF) is defined that shares the position of the body frame (BF)
but does not show pitch rotation.
The procedure followed when applying this formulation in a full railroad vehicle model in an arbitrary
track is:

• In a preprocessing stage, the different mass, damping and stiffness matrices are evaluated for every
identified strecth of the track such as tangent and constant radius curve ones.

• When integrating the linearised dynamic equation of motion of Eq. (2), if the vehicle runs in a
transition strecth, precalculated mass, damping and stiffness matrices are interpolated.

• In every time step of the dynamic simulation, the corresponding BTF related to each wheelset body
is obtained by solving the following non-linear algebraic equation

x̄btf
0
(
stf + si)T (r̄w − r̄w

0
(
stf + si)) = 0 (3)

where as shown in Fig. 1a, x̄btf
0 is the longitudinal tangent vector to the track centerline as a function

of the arc lenght parameters stf and si, r̄w is the position vector of the wheelset respect to the TF,
and r̄w

0 the position vector of the BTF respect to the TF. All of them expressed in the TF.

In this paper the numerical results of the simulation with the developed linearised formulation as in Fig. 2
are compared with the results of the simulation with a fully nonlinear formulation.
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Figure 2: Lateral displacement of a vehicle on an irregular track.
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