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Abstract
The Moving Modes Method (MMM) (see [1]) is a computational procedure for the dynamic simulation of
moving interaction on long flexible bodies in multibody dynamics that has been applied by the authors to
the coupled dynamic analysis of railroad vehicles moving on deformable tracks. The MMM makes use of
a fully Arbitrary Lagrangian-Eulerian (ALE) description of a long solid whose mechanical properties are
captured using a dynamics-preserving selection of modes. In this study, the mesh moves through the solid
at a prescribed velocity. The ALE frame of reference used to describe the flexible body dynamics can also
be used as a trajectory frame of reference (TF) for a set of bodies that interact with the long flexible body.
This paper shows that a method combining a trajectory frame of reference, an ALE description of a long
solid, and structure deformation based on assumed modes is an accurate approach for the study of moving
multibody systems interacting with linear complex structures. The method allows the use of a reduced
set of elastic coordinates to accurately include the dynamics of flexible bodies. Important features of this
formulation are commented on, aiming at providing a comprehensive description of a method that can
be used for the accurate simulation of bodies traveling on long solids. Some numerical results of the
semianalytical solution to a beam resting on a Winkler foundation are analyzed and compared with the
equations of a moving trajectory frame of reference and moving modes. Both methods are found to be
equivalent, whereas the MMM allows to model arbitrary, continuous structures.
The use of a moving trajectory frame of reference for moving loads allows for a convenient and accurate
description of the interaction of moving bodies on deformable continuum: The coordinates are referred
to a kinematic reference closely related to the dynamic evolution of the interaction [1]. This has clear
advantages for the simulation of such systems: (a) steady motion and stability analysis can be easily
performed, (b) the coordinates remain small, which can avoid numerical issues and (c) in case of moving
interaction, it allows for a better description of the interacting structure’s dynamics.
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Figure 1: Moving Modes Method and moving load on Winkler beam

The Lagrange equations of a structure interacting with moving bodies can be derived using the systematic
approach presented by Irschik and Holl in Ref. [2] for non-material volumes. These Lagrange equations
may be written in the following form:
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If, for convenience, the non-material volume is selected as long as necessary, the Lagrange equations for
this particular application take the following classical form. The equations in Eq. (1) particularized to
the MMM can be rewritten in the following form:

Mrq̈e +(Cr +Nr) q̇e +Krqe = STFc f , (2)

The MMM presented in this paper to describe the dynamics of infinite structures under moving loads
is validated using as a reference solution the dynamics of an infinite beam on a Winkler foundation
under the action of constant-velocity moving loads. This problem has a known solution that can be
evaluated using a semi-analytical procedure. The system is shown in Fig. 1. Fig. 2 shows the Frequency
Response Modes (FRM) φk obtained with V = 100 m/s which are the deformation modes selected in this
investigation. The modes are symmetrical for V = 0 m/s but non-symmetrical for V = 100 m/s. This is a
result of the fact that the wave propagation velocity in the forward direction is different from that velocity
in the backward direction in case of a moving disturbance.
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Figure 2: Orthonormal FRM obtained with V = 100m/s

In the simulated problem it is assumed that in the initial instant the Winkler beam shows a steady defor-
mation under the influence of a constant-amplitude moving load with V = 100 m/s. At t = 0 the load is
suddenly removed. Figure 3 shows the deformed shape of the beam at different instants of time using
different sets of modes obtained with load velocities V = 0, 20 and 60 m/s. Results are accurate only
when non-symmetric modes, which are caused by the velocity of the load, are used.
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Figure 3: Influence of the FRM used in the reduced-order response. Deformed shape at different instants
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