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Abstract
Beam elements are important members of flexible multibody systems. Among various existing non-
linear beam theories we here study the geometrically exact beam theory as introduced by Antman [1],
Reissner [2], and Simo [3]. An efficient numerical formulation of this model for dynamic analysis is still
a challenge for researches. Most of the problems reported stem from the properties of three-dimensional
rotations that are directly or indirectly incorporated into the solution methods. The non-linearity of three-
dimensional rotations requires a special treatment in parameterization, discretization, and update. It is
crucial for the overall efficiency of the numerical formulation that in all these procedures a sufficient
attention is paid in preserving the properties of rotations after the discretization.
There is a number of possible ways of choosing the suitable representation or parameterization of spatial
rotations, see e.g. the textbooks [4] or [5]. We will limit our studies to the quaternion representation of
rotations as the applicability of quaternions in three-dimensional beam theories has been recently well
recognized [6, 7].
In this work, we present the derivation of dynamic governing equations of the three-dimensional beam
in terms of quaternions that follows from the d’Alembert’s principle extended with the unit norm con-
straint of the rotational quaternion. We also present a novel numerical solution approach based on the
interpolation of velocities and angular velocities along the length of the beam. The same quantities
are taken to be the primary quantities of the time-discretization scheme. Such approach is in sharp con-
trast to previously presented quaternion-based beam formulations for dynamics, where the displacements
and rotational quaternions were the primary unknowns. Despite the advantages of the quaternion-based
approach, already reported in literature, this replacement of the primary unknowns has proven to be
beneficial for the increase of numerical stability and robustness of the model.
The continuous balance equations of a three-dimensional beam in quaternion notation read
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where ◦ denotes the quaternion product, n and m are stress-resultant force and moment vectors, ñ and m̃
are external distributed force and moment vectors per unit of the initial length; r is the position vector, q̂ is
rotational quaternion, ωωω and ΩΩΩ are angular velocities with respect to fixed and moving basis, respectively,
ρ denotes mass per unit of the initial volume, Ar is the area of the cross-section; Jρ is the centroidal mass-
inertia matrix of the cross-section. Note, that the balance equation (2) differs from the standard angular
momentum balance equation, but we can show the equivalence to the standard one. However, while for
a continuous system these two equivalent sets of equations would theoretically lead to the same result,
in the numerical approach different form of equations could considerably affect the behaviour of the
numerical method.
In constructing the time integrator we follow the idea of Brüls et al. [8] and Češarek and Zupan [9] and
express the time dependent quantities of the second-order differential equation with the first derivatives
of the configuration unknowns:
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Similar approach can be used for rotational degrees of freedom, with an important exception: the rela-
tionship between angular velocities and rotational quaternions is non-linear, thus:
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The primary variables of this approach are the average velocity v and the average angular velocity ΩΩΩ on
the time interval [tn, tn+1], while β ,γ ∈ [0,1] are the parameters. The scheme (5) is expressed in terms
of quaternions with the exponential map denoting the quaternion exponential, defined by infinite power
series:
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We base the spatial discretiation on the same to quantities
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which are the only interpolated unknowns along the lenght of the beam.
After the discretization we need to solve a system of discrete nonlinear algebraic equations at each time
step. The present choice of rotational parameters and the primary unknowns results in relatively simple
and numerically efficient linearization of equations. Besides that, we are able to update the unknowns
consistently which contributes to the long term numerical stability and robustness of the algorithm.
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