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Abstract
In this work, we discuss time integration schemes for the dynamic simulation of nonsmooth flexible
multibody systems. One the one hand, we analyze mechanical systems which undergo impulsive, i.e.,
impacting, and non-impulsive motion. Thereby, we consider dry friction, i.e., arbitrary stick-slip transi-
tions. On the other hand, even large deformations due to flexibility of specific machine parts are covered.
For such applications, standard time integration schemes known from computational mechanics [3] usu-
ally suffer from oscillations in the relative contact velocities [2]. That is why, we take another path.
We develop a framework for the consistent treatment of velocity jumps, e.g. due to impacts. A non-
impulsive trajectory of state-variables is improved by an impulsive correction after each time-step if nec-
essary. This correction is automatically chosen starting from a non-impulsive base integration scheme,
which discretizes the propagation within the time-step. As indicated in Figure 1, we calculate approx-
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Figure 1: Flowchart of computational algorithm [4].

imations for the position qi+1 and the left-sided limit of the velocity v−i+1 of the mechanical system at
the end of a time interval [ti, ti+1] given the initial values, i.e., qi and the right-sided limit of the velocity
v+i . This computation assumes that the propagation (qi,v+i )→ (qi+1,v−i+1) is non-impulsive. However,
active contacts like bilateral and unilateral frictional constraints are considered on the level of the tuple
(gap velocities,contact forces) in a differential-algebraic equations (DAE) sense with reduced drift-off.
Knowing in particular the new position qi+1, we can compare criteria at the beginning and at the end of
the time-step for each contact k: e.g. the gaps gk(qi) and gk(qi+1). If there is at least a contact which



is active at the end of the time-step gk0(qi+1) ≤ 0 but has not been active at the beginning of the time-
step gk0(qi) > 0, we start an impulsive correction of the velocities with the tuple (ġ(qi+1,v+i+1),Λi+1).
Therefore for simplicity, we consider the whole mechanical system with mass matrix Mi+1, normal and
tangential force directions WNi+1 , WTi+1 as well as force parameters ΛNi+1 , ΛTi+1 .
Within the preceding framework, consistency is achieved due to the impulsive corrections on the same
kinematic level as the treatment of non-impulsive constraints. This idea stems from a time-discontinuous
Galerkin setting [5], but is generalized concerning the splitting of non-impulsive and impulsive force
propagation in [4, 6]. Efficiency and further attributes are gained from the base integration schemes. In
this work, we compare the behaviour of four different base integration schemes in the newly developed
framework as well as a classical Moreau-Jean timestepping scheme [1] concerning selected criteria and
examples from academics and industry. In particular, we discuss a half-explicit trapezoidal rule satisfying
the time-discontinuous Galerkin setting, called HETS, the generalized-α method, the Bathe-method and
the ED (energy decaying)-α method as base integration schemes. For examples, we consider a bouncing
ball, a flexible slider-crank mechanism within the floating-frame approach with impacts and friction, an
impacting elastic bar and a rubbing rotor. We analyze the local order of the schemes, the damping ability
of spurious oscillations also in the nonlinear case, the computing time per time-step and the necessary
computing time to achieve a prescribed tolerance. In addition, we discuss the convergence of finite
element discretizations of flexible machine parts concerning modal references.
It turns out that the half-explicit timestepping is a very robust and the most efficient method as far as we
deal with non-stiff problems. The timestepping schemes based on the generalized-α method, the Bathe
method and the ED-α method become most efficient for stiff problems with spurious oscillations. In our
test cases the generalized-α method is the most efficient base integration scheme concerning comput-
ing time, however it may get unstable in the nonlinear regime. The ED-α method satisfies exactly the
opposed characteristics. It is the Bathe-method, which seems to be the best compromise concerning sta-
bility and efficiency in the nonlinear regime. We propose it as a base integration scheme for timestepping
methods whenever stiff problems with impacts and friction have to be solved.
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