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Abstract
Localization of rigid substructures in multibody systems is still an open research field with many applica-
tions in mechanism analysis and synthesis, especially for so-called "frameworks" consisting of spherical-
spherical rods. While for planar systems effective methodsbased on Laman’s theorem [1] exist, the 3D
case still poses open challenges. In this paper, a new approach for rigidity detection [4] (used for solving
the "double-banana" case) based on modeling of multibody systems as systems of interconnected loops
[2] is applied to the recently presented challenge of so-called nucleationfree mechanisms [3], which con-
tain intrinsically movable substructures whose rigidity can be detected only from the global couplings.
The regarded system [3] consists of seven topologically identical "roofs" (Fig. 1a), each representing
a spherical mechanism that can be deformed by moving the endpoints (P1/P2 or Q1/Q2) along their
connecting line (termed "implied edge" in [3]) and which canrotate about the implied edges without
deformation. By connecting seven roofs as in Fig. 1b) in a cycle together, a mechanism consisting of
altogether 56 rods and 91 spherical-spherical constraintsis obtained, yielding 336−273= 63 degrees of
freedom (DOF), composed by 56 isolated DOF of the rods plus 6 rigid-body DOF plus one proper DOF
for the internal mobility of the whole mechanism. Obviously, this mobility corresponds to the 1-DOF of
the 7R loopL0 in which the roofs are now rigid and can only rotate about their implied edges (Fig. 1c).
While it is very difficult to detect rigidity of the roofs in the cycle by conventional DOF counting algo-
rithms, tracking of isolated DOFs within the loops and theircouplings makes this identification easy. To
this end, regard the mechanism as a system of smallest independent loops [2], which are here e.g. the four
triangle loopsL1, . . . ,L4 for each roof, the loopsL5 between two roofs, and the internal overall loopL0

(36 in total). Regarding the loops in a first step as unconnected, the loopsL1, . . . ,L4 have three, the loop
L5 has six, and the loopL0 has 15 internal degrees of freedom, respectively (marked by"f=i" in the upper
left sub-box of the loop boxes in Fig. 3). At multiple joints in which the number of incident loops is equal
or larger than the number of incident bodies, couplings between the internal variables of the loops occur,
corresponding to the condition that the result of the concatenation of relative motions over all incident
loops is constant [2]. In the present case, joints "B" inducea coupling between loopsL0 andL5 and the
loopsL1 of two neighboring roofs, while joints A induce two couplings, one between loopsL2,L4 and
L5, and one between loopsL3,L4 andL5, respectively, which interchange cyclically between the roofs.
Each coupling implies that the sequence of 3D rotations is equal to the unit matrix, yielding three scalar
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Figure 1: Connecting seven roofs with one DOF each to a cycle with 1 DOF in total
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Figure 3: Kinematical network of 7-roof mechanism

constraints [4]. Putting together all loops and their couplings (shown as summing junctions), the cyclic
block diagram of Fig. 3 is obtained. Note that by summing up the internal degrees of freedom of all
loops and subtracting the coupling conditions (3 per summing junction) yields for the global DOF=57,
which corresponds to the 56 isolated rod DOF and 1 DOF of the cycle. Thus the loop connection graph
removes automatically the overall 6 rigid DOF and is isomorphic to the multibody representation.
The rest of the algorithm consists in finding proper inputs for the loops such that the local DOF of each
loop is respected and that there are no closed cycles in the directed edges [2]. If this is not possible,
additional (pseudo) inputs are selected at some loops from which implicit constraints result in some
loops downstream (shown as "nx" in the lower right sub-box of the loop boxes in Fig. 1). For systems
of spherical-spherical rods, there are three types of inputs: (a) "fully" isolated DOFs (dotted lines),
which are immaterial and which can be removed without effectfrom the mechanism; (b) "transmitted"
isolated DOFs (dashed lines), which have been already counted once as fully isolated in one loop and
become transmitted in a neighboring loop; and "structural"isolated DOFs (dot-dashed lines), which leave
adjacent subchains within a loop invariant but operate to the ’outside’ of the loop as proper DOFs (here
rotations about the induced edges). The difference betweenfully isolated and transmitted isolated DOFs
can be seen from Fig. 2. Assuming that rotations of bars 1 and 2are counted as fully isolated in loopLi

(α , β ), the isolated rotation about bar 2 in loopL j (η) is now material, and hence termed "transmitted". If
loop L j registers the rotation about bar 3 (γ) as fully isolated, than the isolated rotations about bars 1and
3 in loopLk (ζ , θ ) are again material, and thus transmitted. Note that the third connected rotation in loop
Lk (ψ) is a proper transmitted angle that in the case e.g. of a triangle loop will be subject to an implicit
constraint equation. Choosing isolated DOF as inputs for loopsL1,L2 andL3 for each roof, yields the
transmission structure displayed in Fig. 3. By removing thefully and structurally isolated DOFs and
tracking only the transmitted isolated DOF (two at loopL1 per roof) and the implicit constraint equations
(14 in total within the cycle of roofs), it is detected that all loops L1, . . . ,L4 are locked, and thus that
only the structural isolated DOF of rotations about the implied edges are movable, showing that the
mechanism is a 7R loop. The developed methods are currently being implemented in Mathematica.
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