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Abstract
The floating frame of reference (FFR) provides a natural framework for the model order reduction of
flexible multibody systems. The global response of a body can be split into a global rigid motion qr and
a local elastic displacement q f , which can in turn be linearly mapped into a small subspace spanned by
the columns of a matrix V, as

q f = Vηηη (1)

where ηηη is the vector of modal amplitudes. This approach is very effective when the elastic deflections
are small. In this case, the basis V can be formed with few vibration modes (VMs). However, when elas-
tic geometric nonlinearities have to be considered, VMs fail to correctly reproduce nonlinear couplings
and large deflections and their use is therefore of limited applicability.
In an earlier contribution [1] we showed that such reduction basis can be enriched with Modal Derivatives
(MDs) stemming from the sensitivity of the eigenvalue problem for free vibration with respect to modal
amplitudes:

V =
[
ΦΦΦ1, . . . ,ΦΦΦm, . . .

∂ΦΦΦi
∂η j

, . . .
]
, (2)

where ΦΦΦi and ∂ΦΦΦi
∂η j

are the VMs and the MDs, respectively. This reduction correctly captures the nonlinear
bending-stretching behaviour associated to elastic geometric nonlinearities. Representatives results are
shown in Figure 1. While simple and effective, this approach bears the drawback of a relatively large
reduction basis, as the number of obtainable MDs scales quadratically with the size of the corresponding
set of VMs.
We present in this contribution an alternative approach based on a quadratic manifold for the reduc-
tion.The local elastic displacement vector q f is expanded in the direction of the chosen VMs Φi, i =
1, . . . ,m,

q f (t) = ΦΦΦiηi(t)+ΘΘΘi jηi(t)η j(t), (3)

where the quadratic terms ΘΘΘi j are related to the MDs.
The proposed reduction is therefore a manifold of size m. As a consequence of the nonlinearity of the
reduction, the projection basis for the elastic displacement qqq f is state dependent and generates convective-
like terms and configuration dependent mass matrix. The resulting reduced equations for an arbitrary
flexible multibody system can be written as

M̃(qr,ηηη)η̈ηη + Q̃v(q̇r, η̇ηη)+ Q̃nl(ηηη)+ C̃∂ λλλ = Q̃ext , (4)

complemented with the constraint equation C(q f ,ηηη) = 0. The ?̃ refers to the projected quantities, Q̃v,
Q̃nl and Q̃ext are the reduced convective, elastic, and external forces, respectively, and λλλ are the Lagrange
multipliers associated to the constraints.
The construction of the reduction basis is illustrated in Figure 2 for a rotating, planar beam in the FFR,
with a nodal-fixed frame as described in [2]. In this case, the lower-frequency VMs feature bending
displacement only, while the corresponding MDs, which describe the second-order nonlinearities, exhibit
longitudinal displacements.
Preliminary attempts for the reduction of the transient analysis of flexible nonlinear structures in a La-
grangian framework show excellent performances of the proposed method. In this contribution, we will
present a comparison of reduced order models for highly flexible multibody obtained with a linear and
quadratic manifold on representative highly flexible multibody systems featuring elastic geometric non-
linearities and arbitrary rigid rotations.
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Figure 1: Vertical tip displacement of a rotating beam subjected to constant moment. The full solution
is compared to a the reduced solution obtained with (a) 3 VMs and 6 MDs, and (b) 9 VMs, respectively.
Although some axial VMs are contained in the basis for case (b), the MDs corresponding to the first 3
VMs (case (a)) yield more accurate results.

M

FFR

Modal Transformation

Global Elastic Rigid

  

 =   

Figure 2: Modal basis extraction procedure for a rotating beam in FFR. The axial displacement DX (red
dot line with blue node) is plotted as a function of node position.
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