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Abstract 

Trefftz originally proposed his method in 1926, but it has been in the last decades, 
especially since Jirousek and his collaborators originated hybrid-Trefftz (HT) finite element 
(FE) model that it has become a highly efficient computational tool for the solution of difficult 
boundary value problems. These methods have received important contributions for their 
development from many different fields of application; among them: potential problems, plane 
elasticity, plate bending (thin, thick, post-buckling), heat conduction, advective–diffusive 
transport. More recently, Herrera interpreted Trefftz method as a domain decomposition 
method (DDM) and proposed a unified theory based on it. Herrera’s version of Trefftz 
method supplies a general perspective, which yields a systematic framework for very broad 
classes of numerical methods for partial differential equations. Then, the approaches can be 
classified into two wide categories: direct -or Trefftz-Jirousek- and indirect -or Trefftz-Herrera- 
methods. Herrera’s unified theory expands considerably Trefftz method scope and yields new 
avenues of thought for numerical methods of partial differential equations. Although several 
important results, such as a very general formulation of DDMs, together with the Localized 
Adjoint Method (LAM) and broad families of numerical approximations, the future 
developments are even more promising. This lecture will be devoted to explain the present 
state and the expected future of these methodologies.  
 

1. INTRODUCTION  

Trefftz introduced his method in a paper published in 1926 [1]. However, the origins of 
the hybrid-Trefftz (HT) finite element (FE) model are only around twenty five years old [2, 3]. 
Since then it has become a highly efficient computational tool for the solution of difficult 
boundary value problems [4, 5] with an increasing popularity among researchers and 
practitioners [6-12]. In parallel and to a large extent independently, a general and elegant theory 
of domain decomposition methods (DDM) has been developed by Herrera and coworkers 
[13-21]. This, throughout its different stages of development, has been known by a variety of 
names; mainly, localized adjoint method (LAM), Trefftz-Herrera method and unified theory of 
DDM. This is a general formulation, which subsumes and generalizes many other approaches. 
In particular, it is the natural framework for Trefftz methods and several aspects of that theory 
have been recognized as fundamental by some of the most conspicuous researchers of these 
methodologies [4, 22 and 23]. Thus, based on it, a unified theory of Trefftz method has been 
developed [19, 21], which expands its scope. Indeed, any partial differential equation or system 
of such equations, independently of its type, can be dealt with. Furthermore, the general 
problem treated is one with prescribed jumps in the internal boundary and the differential 
operators coefficients may have jump discontinuities. In addition, such theory can be applied 
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for constructing discretization procedures, as well as for incorporating parallel computing 
resources in numerical models of continuous systems of science and engineering.  
 

2. UNIFIED THEORY OF TREFFTZ METHODS  

The basic idea of the unified theory Trefftz Method is explained next [19]. Consider a 
boundary-value problem –or initial boundary-value problem- for a partial differential equation, 
or system of such equations, formulated in a domain Ω. Then, given a partition 

{ }1, ..., EΠ ≡ Ω Ω  of such a domain, the general problem of domain decomposition methods 
consists in establishing procedures, which permit solving the ‘global’ problem defined in Ω, by 
solving exclusively ‘local’ problems defined in each one of the subdomains of the partition iΩ , 

. The unified theory of Trefftz methods considers procedures for gathering 
information -about the global solution of the problem- in the internal boundary of the 
partition ∑ –i.e., that which separates the subdomains from each other-. In the general method 
of the unified theory, a target of information on ∑ –the ‘sought-information’- is defined 
beforehand, such that it is sufficient for defining well-posed local problems, which the global 
solution must satisfy in each one of the subdomains of the partition 

1,...,i E=

iΩ , . Then a 
search is directed to obtaining the sought-information. Two very broad categories of procedures 
for achieving this goal are identified by the theory: ‘direct’ (or Trefftz-Jirousek) and ‘indirect’ 
(or Trefftz-Herrera) methods.  

1,...,i = E

 
In the usual interpretation of direct methods, they are seen as techniques for building the 
global solution by putting together, just as ‘bricks’, the local solutions. In the unified theory, 
however, a slightly more sophisticated point of view is adopted, since the local solutions of the 
differential operator are used to establish compatibility relations that the sought-information must 
fulfill. These relations give rise to the global system of equations, from which the sought-
information is obtained.  
 
In Trefftz-Herrera methods, on the other hand, a system of weighting functions of a special 
kind, with the property of yielding the sought-information in the internal boundary, exclusively, is 
developed and applied. The idea of constructing such test functions stems from the 
observation that, in the method of weighted residuals, the information about the exact solution 
that the approximate one contains, depends on the system of weighting functions, which is 
applied [24]. And, in order to fabricate the special test functions, it is necessary to have a 
procedure for analyzing such dependence. In the theory of indirect domain decomposition 
methods, the basic ingredient of such analysis are Green-Herrera formulas. These formulas 
were originated by Herrera, in 1985 [14,15], and apply when both, trial and test functions, are 
fully discontinuous; something that cannot be done when the standard theory of distributions 
is used. They have already played a fundamental role in establishing the theoretical foundations 
of a method that is extensively used in water resources studies; the Eulerian Lagrangian 
Localized Adjoint Method [25] (ELLAM). Using them, necessary and sufficient conditions that 
the test functions must fulfill, in order to yield the sought-information exclusively, are established. 
Also, a characterization of the sought-information in terms of a variational principle (or weak 
characterization) is supplied, which holds when test functions of the special kind described 
above, are applied. This principle constitutes a very general, although abstract, formulation of 
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indirect methods [6]. In addition, techniques to fabricate the special kind of test functions are 
developed in the theory.  
 
Reference [20] supplies an updated version of indirect domain decomposition methods, where 
the theory and its applications to problems in several dimensions are discussed with 
considerable detail. In addition, a plenary lecture of the 14th International Conference on 
Domain Decomposition Methods was devoted to the indirect method of domain 
decomposition [26] and further applications can be found in its Proceedings [27]. In the 
applications that have been done thus far, many advantages of collocation methods derived 
from this approach have been exhibited [27,28]. Among others, generally the structure of the 
global matrix is simpler and, if desired, a significant reduction of the number of degrees of 
freedom associated with each node can be achieved. A common feature of ‘direct’, when 
formulated as in the unified theory, and ‘indirect’ methods is that in both, the information 
about the solution is obtained at the internal boundary exclusively and, consequently, the 
interpolation functions used to approximate the sought solution are also applied in the internal 
boundary only. Such information can be extended to the interior of the subdomains of the 
partition by a procedure, which is implied by the theory, referred as ‘optimal interpolation’ 
[29]. 
 
3. SCOPE AND APPLICATIONS  

The generality of the methodologies presented in this article is great, since they are 
applicable to any partial differential equation or system of such equations, which is linear, 
independently of its type. The coefficients of the operators can also be discontinuous across 
the internal boundary Σ and the problems treated include prescribed discontinuities across Σ. 
To illustrate the wide theory applicability the following cases are here mentioned:  

i. The general elliptic equation of second order;  
ii. The equations of equilibrium of linear elasticity;  
iii. The biharmonic equation;  
iv. Stokes problem;  
v. The heat equation and parabolic equations, in general;  
vi. The wave equation and the 3-D equations of elastodynamics.  

Trefftz-Jirousek approach has been extensively applied to symmetric problems with constant 
coefficients, mainly. This is due to the fact that authors working with Trefftz-Jirousek method 
use T-complete function systems of analytical solutions exclusively. Qin [5] has done a very 
comprehensive survey of such applications. The fields covered by them include potential 
problems, plane and 3-D elastostatics, thin plates, moderately thick (Reissner-Mindlin) and 
thick plates, plate bending, transient heat, elastoplasticity and dynamics of plate bending.  
 
Applications of Trefftz-Herrera approach and of the recently developed Trefftz unified theory, 
on the other hand, do not require the use of analytical T-complete systems. In particular, this 
method is applicable, and has been applied to problems with variable coefficients. Also, the 
procedures can be used to develop discretization procedures and for parallel processing partial 
differential equations. Thus far, it has been applied to elliptic equations [5], the biharmonic 
equation [28] and parabolic equations [30].  
 
Variational and weak formulations are essential, and play a central role in the formulation of 
the basic equations of Trefftz methods. During the past decades much work on them has been 
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done. Basic for Trefftz-Jirousek approach are those of Piltner [31], Jirousek [32] and Jirousek 
and Zielinski [33]. Very general variational and weak formulations for the unified theory were 
given by Herrera and his collaborators [14,15, 17, 25] and their relations with those of Trefftz-
Jirousek approach were recently established [34].  
 
4. NOTATIONS  

In this paper  is a linear space; elements of  are functions. Functional-valued operators 
of the form , which are linear, will be considered. Here,  is the linear space 
whose elements are the real-valued linear functionals defined on . Given

D
P D

D
: D→ *

*
*D

D  f D∈ , its value 
 at any  is denoted by( )f v ∈v D ,f v , while *DPu∈  will be the value of  

at any . Therefore, given , the expression 

: *D→P D

u∈D :P D → *D ,vPu  defines a unique bilinear 
functional on  and this establishes a one-to-one correspondence between the class of 
linear functional-valued operators considered and such bilinear functionals. Given 

D × D
*f D∈  

and , the equation  is an equality between linear functionals and, as such, it is 
tantamount to  

u D∈ Pu = f

 , ,Pu w f w=    w D∀ ∈  (4.1) 
 
The notations nRΩ ⊂  and  will be used for a domain of the Euclidean space of 
dimension  and its boundary, respectively. In the first part of our discussion,  can be any 
natural number, but starting with Section 4, n  is taken to be equal to 2. Let 

∂Ω
n n

{ }1, ..., EΩ Ω

i

Π ≡  
be a partition of Ω . Given such a partition, the boundaries of the subdomains are ∂Ω , 

. Clearly,  and the “internal boundary” 1,...,i = E
1

E

i=
⊂ ∂∪ iΩ∂Ω Σ  of Ω  is defined to be the 

closed complement of  relative to ∂Ω
1

E

i=
i∂Ω∪ . It is assumed that for each , there is a 

linear space , whose elements are functions defined in 

1,i E...,=

( )iΩD iΩ . Then the linear space  is 
defined to be  

D

 ( ) ( ) ( )1 ... ED D D D≡ Ω ≡ Ω ⊕ ⊕ Ω  (4.2) 

Possible choices for  are the Sobolev spaces ( iD Ω ) ( )s
iH Ω , 1,...,i E= . For the case of 

elliptic equations of second order that will be considered, it is convenient to take . In 
fact, when the space  is defined by Eq.(4.2), a function

2s ≥
D  u D∈  is a finite sequence of 

functions  such that( 1, ...,u u≡ )Eu ( ) i iu D∈ Ω , 1i ,..., .E=  It is assumed that the trace of 

every  is defined at every point of ( )iu D∈ Ω i i∂Ω , except for, possibly, a set of measure 
zero. At any point of , again with the possible exception of a set of measure zero, there is 
defined a unit normal vector 

 Σ
n  and the manifold Σ  is oriented in this manner, taking as 

positive the side where n  points to. Given a function  u D∈ , ( )u1, ..., Eu u≡ , two traces are 
defined at every point of  , which are denoted by Σ u  and u+ −

u D
, respectively. Since , it is 

useful to define the ‘jump’ and the ‘average’ of any function 
u u+ −≠

∈  by  

 [ ]u u u+ −= −  and u u  (4.3) ( ) / 2u+ −= +
i
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respectively. Clearly, the definition of the jump of a function is dependent on the orientation 
of ; however, the expressions that will be handled in this paper are invariant with respect to 
such orientation. In some previous works, for simplicity, we have written , in

 Σ
 u fΩ=L Ω , to 

mean  
 u fΩ=L , at each iΩ , i 1,..., E=  (4.4) 
For greater clarity, in the present paper we will be more explicit and write directly, Eq.(4.4), 
since generally  is not defined onw uL Σ , when u D∈  and  w D∈ . Similarly, we also write 

 instead of . Assume a tensor-valued function 
1 i

E

i
w udx

Ω
=
∑∫ L  w udx

Ω∫ L a  is defined in Ω , 

then it can be shown that  

 [
1 i

E

n n n
i

wa udx wa udx wa u dx
∂Ω ∂Ω Σ

=

⋅∇ = ⋅∇ − ⋅∇∑∫ ∫ ∫ ]  (4.5) 

The unit normal vector is taken pointing outwards both, on ∂Ω  and  ,i   i = 1,...,E.∂Ω  On Σ , 
it is taken as explained before.  
 
5.- INDIRECT FORMULATION OF DOMAIN DECOMPOSITION  

The following presentation is based on [20]. To start, let  be a differential operator and 
 its formal adjoint. Then, there exists a vector-valued bilinear function, 

L
*L ),( wuD , which 

satisfies  
 * ( ,w u u w u w);− ≡ ∇iL L D  (5.1) 
Additional bilinear functionals B , ,  and , defined point-wise, 
are introduced, such that  

( , )u w ( , )w uC ( , )u wJ ( , )w uK

 ( , ) ( , ) ( , )    on  u w n u w u w∗≡ −iD B C ∂Ω  (5.2) 
and  
 [ ( , )] ( , ) ( , )   on   u w n u w u w∗− ≡ −iD J K Σ  (5.3)  
For the case when the coefficients of the differential operators are continuous, Herrera [17, 25] 
has given very general formulas for bilinear functionals J  and K , which fulfill Eq.(5.3); they 
are:  
 ( , ) ([ ], ) ,     ( , ) ( ,[ ])   u w u w n u w u w n∗≡ − ≡� iJ D K Dand � i  (5.4) 
By virtue of the generalized Gauss theorem it is seen that Eqs. (5.1) to (5.3), together, imply 
the following Green formula:  
 (5.5) ( , ) ( , ) * *( , ) *( , )w udx u w dx u w dx u wdx u w dx u w dx

Ω ∂Ω Σ Ω ∂Ω Σ
− − ≡ − −∫ ∫ ∫ ∫ ∫ ∫B J C KL L

Defining the bilinear functionals  
 , ;              * , * ;Pu w w udx Q u w u wdx

Ω
≡ ∫ L L

Ω
≡ ∫               (5.6) 

 , ( , ) ;       * , *( , ) ;Bu w u w dx C u w u w dx
∂ ∂Ω

≡ ≡∫ ∫B
Ω
C  (5.7) 

 , ( , ) ;        * , *( , ) ;Ju w u w dx K u w u w dx
Σ Σ

≡ ≡∫ ∫J K

;

 (5.8) 
Eq. (5.5) can be written as an identity between bilinear functionals:  

* * *P B J Q C K− − ≡ − −  (5.9)  
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Given functions u D1Ω ∈ ,  and 1u D∂ ∈ 1u DΣ ∈ , the general boundary value problem with 
prescribed jumps (BVPJ) to be considered is  
 , ,

 
iu f  in  i = 1,..,EΩ= ΩL  (5.10)  

 ( ) , , , u w g w on ∂= ∂ΩB  (5.11)  
and  
 ( ), , ,u w j w  on Σ= ΣJ  (5.12) 
which hold for ∀ ∈ . Here  2w D
 , ,if u  in  i = 1,..,EΩ Ω≡ ΩL  (5.13) 
and the linear functionals  and 2g D∗

∂ ∈ 2j D∗
Σ ∈ , are defined by  

 ( ) ( ), , , , , 2g w u w  and j w u w  w D∂ ∂ Σ Σ≡ ≡B J ∀ ∈  (5.14) 
Introducing the notation  
 f PuΩ≡ , g Bu∂≡  and j JuΣ≡ ,  (5.15) 
where 2,    f g j ∗∈and D , a weak formulation of the BVPJ can be expressed as an equality 
between linear functionals  
 ( )P B J u f g j− − = − −  (5.16) 
which can be written more explicitly as  
 ( ) ,P B J u w f g j w− − = − − , w D ∀ ∈  (5.17) 
This is referred as the ‘variational formulation in terms of the data’ and, by virtue of the Green 
formula of Eq. (5.9), it is equivalent to the following ‘variational formulation in terms of the 
complementary information’  
 ( * * *) , ,Q C K u w f g j w− − = − −  w D∀ ∈  (5.18) 
As mentioned in the Introduction, the general strategy of the indirect approach to domain 
decomposition methods consists in defining a target of information on the internal boundary, 
referred to as the “sought information”, and developing procedures for gathering it. To this 
end, a weak formulation characterizing the sought information, which constitutes the basis of the 
indirect approach to domain decomposition, is derived next. The bilinear functional  is 
decomposed by means of two bilinear functionals,  and 

K
S R , which fulfill  

      K S R≡ +  (5.19) 
and, when u  is a solution of the BVPJ, ‘the sought information’ is defined to be . In 
particular, a function u  is said to ‘contain the sought information’ when . The test 
functions that yield the sought information, exclusively, constitute a linear subspace, 

. For any function 

1D̂∈

Q CN ∩

*S u
* uˆ D∈

2R D⊂

ˆ*S u S=

N N N≡ ∩ 1û D∈ , the Green-Herrera formula of Eq. (5.9) 
implies  
 ( )ˆ ˆ* , ,    S u w P B J u w w N− = − − ∀ ∈  (5.20) 
The basic variational principle, on which the indirect approach is based, is:  
Theorem 3.1.- Let  be a TH-complete system for . Then, a necessary and 

sufficient condition for u
Q CN N N N⊂ ≡ ∩ ∩E

1
ˆˆ D

R *S

∈  to contain the sought information, is that  
 ˆ* , , ;    S u w f g j w w− = − − ∀ E∈  (5.21) 
This theorem was introduced in [4].  
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Eq. (5.21), which characterizes variationally the sought information on Σ , constitutes a general 
abstract formulation of Trefftz-Herrera Domain Decomposition. It only yields information on 
the internal boundary, but in the theory it is assumed that such information, when 
complemented with Eqs. (5.10) to (5.12) is sufficient for defining well posed problems in each 
one of the subdomains of the partition, separately. However, knowledge of  does not 
supply any information about the solution in the interior of the subdomains  and the 
natural way of extending this information into the interior of those subdomains is by means of 
‘optimal interpolation’. By this, we mean actually solving the above mentioned well-posed local 
boundary-value problems in each one of the subdomains 

*S u
iΩ

i  (i = 1,...,E)Ω .  
 
 

6. ELLIPTIC EQUATIONS  

In [20], collocation methods for the general non-symmetric elliptic equation of second 
order were derived. However, here for simplicity only the symmetric case will be treated Thus, 
the BVPJ to be discussed is  
 ( )u a u cu fΩ≡ −∇ ∇ + =i iL , on iΩ , 1,...,i E=  (6.1) 

with boundary and jump conditions given by  
 g  u u on Ω∂ ∂= ≡ ∂  (6.2) 

   0 1[ ]    [ ] [ ]    n nu u j and a u a u j on Σ Σ Σ Σ= ≡ ∇ = ∇ ≡i i[ ]        (6.3) Σ

]

The trial and test functions will be taken from the same linear space , defined in Section 4. 
Above , while  are auxiliary functions which may be used for prescribing 
the boundary and jump conditions, respectively. In addition, it is assumed that the boundary 
conditions and jump conditions are compatible. By this we mean that there exists a function 

 such that  

D
0c ≥

D

u  and u D∂ Σ ∈

u∂Σ ∈

 , on , [ ]u u∂Σ ∂= ∂Ω [u u∂Σ Σ=  and [ ] [ ]n na u a u∂Σ⋅∇ = ⋅∇ Σ Σ on  (6.4) 

Application of Eq. (3.1) yields  
 ( , ) ( )u w a u w w u= ∇ − ∇iD  (6.5) 

for this case. Also, for the symmetric differential operator of Eq. (6.1) it is possible to choose 
 and ( ) (, ,u w u w≡B C ) ( ) ( ),u w u w≡J K , , as we will do. Then, suitable choices are  

 ( ) ( ), nu w ua w u w≡ ∇ ≡iB ,C  (6.6) 

and  

 ( ) q (, [ ] [ ] ,n nu w u a w w a u u w
⋅

≡ − ∇ + ∇ =��i iJ )K  (6.7) 

Observe that ,  P Q≡ B C≡  and J K≡ . The definition of the sought information depends on 
the target of information one wishes to obtain on the internal boundary and several choices are 
possible. Each such choice gives rise to an  and a corresponding formulation. For example, 
for the Hybrid-Trefftz finite element, the two dual formulations of Jirousek & Zielinski [33] 
are obtained when the sought information is chosen to be the function and the normal 

*S
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derivative (or the ‘traction’), respectively. For the BVPJ defined above, throughout this article 
the ‘sought information’ will be the average of the function, on Σ . Then, the corresponding 
definitions of  and S R  are:  

s∇

uds⋅ ∇

 QN≡ ∩

Σ

0 ∈

1,...,i =

= −v
w∀

( )0u−* ,S w

v

 [ ], * , nSw u S u w u a w d
Σ

≡ = ∫
��  (6.8) 

and  

 q* , , [ ] nR u w Rw u w a
⋅

Σ
≡ = −∫  (6.9) 

Furthermore,  and the condition C R P BN N N N N N∩ ≡ ∩ ∩ R w N∈  is equivalent to  
 * w 0=L  in each jΩ  (6.10) 

 [ ] 0,w  on = Σ ; (6.11) 

i.e.,  is continuous in , and  w Ω
 0  on w = ∂Ω  (6.12) 

 
It is convenient to introduce an auxiliary function 0 u D∈ , satisfying  

 
0

0
0

1
0

  

[ ] [ ]   

[ ] [ ]  n n

u u g on 
u u j on 
a u a u j on 

Σ Σ

Σ Σ

= = ∂Ω

= = Σ

∇ = ∇ =i i
 (6.13) 

Making use of such u , we define  D
 0( ) ( ) ( )x u x u x= −v , in Ω  (6.14) 

Then  
 0( ) ( ),   for ,   ix f u x xΩ= − ∈ΩL Lv  (6.15) E

 
( ) 0,   on 

[ ] 0,   on ;
[ ] 0,  on n

x

a
Σ

Σ

= ∂Ω
= Σ
∇ = Σi

v
v

v
 (6.16) 

In particular , and 0P f P 0B =v 0J =v . Thus, Eq. (3.18) implies  u
 0* , , ,    S w f w Pu w− = −v  (6.17) N∈

i.e., making use of Eq.(6.8),  

 [ ]
1

   
j

E

n
j

a w ds w f dx wΩΣ Ω
=

− ≡ − ∇ = ∀∑∫ ∫iv v L  (6.18) N∈

In Eq. (6.18), the value of the function v  on Σ  has been used instead of the average v , 

because , as v  is continuous across 

�

=�v Σ . Even more, when  and 

, with r , and the coefficients of the operator  are sufficiently regular, 

( )rf HΩ ∈ Ω

(rH∈ )0 ( )u x ΩL 0≥ L
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( )2C Ω  say, then v . In particular, the trace of v  on ( )2H∈ Ω Σ  belongs to C . This fact 

will be used later on, to simplify the numerical implementation of the method. Indeed, using 

TH-method a numerical search for the trace of v  on 

( )1 Σ

Σ  is carried out and the fact just 

mentioned permits reducing the space to be searched, which is numerically advantageous. In 

addition, a straightforward calculation shows that when ˆ C Pw w N N N , Q RN N∈ = ∩ =∩ ∩

B

 

, then  RN ∩ N

( ˆ a ) ,w w Nˆ ˆ* , w w− = − ˆw ww dx⋅ + ˆc∇⋅ ∈

0c ≥

 Σ
N⊂E N

u

iΩ
∂Ω∩∂

∂

[ ]u1
2− Σ≡ −

ˆ
i
u ŵd⋅∇ x

ˆ RN ŵ N

[ ] [ ]ˆ ˆ

ˆ ˆ, *
i
ua wdx

Cu w S u

∂Ω
⋅∇

= −

ˆ a ˆ ˆn ndx u a w
Σ

⋅∇∫
i

ˆ dxw −

ˆ ˆ ˆ ˆ ˆ ˆ* , , ,S u w Cu w− = ˆ ˆw w*S u− ,Ru+

 
1

[ ]
i

E

n
i

S w w dx w
Σ Ω

=

⋅∇ = ∇∑∫ ∫a , ∀  (6.19) 

Therefore,  is symmetric and positive-definite on , whenever .  *S− N
 
In what follows, the weak formulation of Eq. (6.18) constitutes the basic result from which 
TH-Domain Decomposition will be derived. When applying it, it suffices to take a TH-
complete subset  instead of the whole of  (see [20]). The solution of the weak 
formulation of Eq. (3.18) yields the function v  on the internal boundary , exclusively. This 
permits deriving the average of the sought solution on the internal boundary by means of Eq. 
(6.14), which implies  
 0u u= +� � v , on Σ  (6.20) 

If desired, the solution  of the BVPJ can be obtained in the interior of the subdomains of the 
partition by ‘optimal interpolation’, which consists in solving well-posed Dirichlet problems in 
each of the subdomains of the partition. At a given subdomain, , the boundary data consist, 
at points belonging to , of the boundary data of the global problem and, at points 
on Σ∩ , they are derived by application of the identities:  

iΩ

iΩ

 [1
2

u u u+ Σ≡ +� ]  and u u�  (6.21)  

Observe that  

 
1

ˆ ˆ* ,
E

n
i

S u w a
∂Ω

=

− ≡∑∫  (6.22) 

when u N  and , because  C∈ ∩ C N∈ ∩ R

  (6.23) 1

ˆˆ

ˆ ˆ ˆ ˆ, ,

E

n
i

wu dx u
n

w Ru w

∂Ω Σ
=

∂
= − ⋅∇

∂
+

∑∫ ∫ ∫

 
and  
  (6.24) 
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Eq.(6.22) yields some advantages when numerically computing ˆ ˆ* ,S u w− . Notice that in 
particular, Eq.(6.22) holds when û N∈  and ŵ N∈ .  
 
7. TH-Discretization  

TH-complete systems are infinite for problems in more that one independent variable. 
Therefore, in numerical applications of TH-Domain Decomposition, it is necessary to 
approximate TH-complete systems by finite families of test functions belonging to 

. This of course implies a truncation error that is reflected in the accuracy 
of the approximate solutions.  

Q CN N N N≡ ∩ ∩ R

 
Functions  are uniquely determined by their traces on the internal boundary  because 
they fulfill Eqs. (6.10) to (6.12). Thus, the subspace of test functions  to be applied can 
be specified by taking a suitable finite dimensional manifold of dimension , of functions 
defined on Σ . We use the notation  for the subspace spanned by 

w N∈ Σ
N N⊂�

m
N N⊂�

{ }1,≡E ..., mw w� � N⊂ . Also, the trace on Σ  of the function D∈v  that fulfills Eqs. (6.14) and 
(6.15) will be approximated by  

 
1

m

c wα
α

α=

= ∑� �v , on Σ  (7.1) 

Here, the coefficients ( 1, ..., mc c c≡

w N∈ �
)  are determined by imposing the condition that Eq. (6.17) 

is fulfilled for every . Then  �
 S c b=i  (7.2) 

where ( )1, ..., mb≡b b , and  

 , ( )0
1 i

E

i
b w f uα
α ΩΩ

=

≡ −∑∫ � L dx 1,..., mα =  (7.3) 

In addition, the elements of the ( ) , mXm matrix− S , are given by  

 ,nS w a w ds Sw wβ α α
αβ Σ

 ≡ ∇ = ∫ � � �i β�  (7.4) 

Clearly, the matrix S  is symmetric and positive definite, by virtue of Eq. (6.19).  
 
The system of equations (7.2) was applied, in [20], using test functions with local support that 
are approximate solutions of the boundary value problem defined by Eqs.(6.10) to (6.12). 
Actually, they exactly satisfy the boundary and jump conditions, while the differential equation 
is approximated using orthogonal collocation on bi-cubic polynomials in the interior of the 
subdomains of the partition. Two algorithms were derived: one using linear interpolation on Σ  
and the other one piecewise cubic polynomials. This latter algorithm yields exactly the same 
approximation as the usual orthogonal spline collocation in bi-cubic polynomials, but with 
much better structured matrices. The order of approximation is ( )4O h ; see [35]. In particular, 
they are symmetric and positive definite. Also, the number of degrees of freedom associated 
with each node is reduced to 3, from 4 (see [20]).  
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