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Abstract We consider the shape and topology optimization of systems governed by external
Bernoulli-type free boundary problems. Instead of the direct free boundary problem we consider
a more complex inverse-like problem where the goal is to find a shape of the inner (non-free)
boundary such that the respective free boundary is as close as possible to a given target shape.
We use the so-called pseudo-solid domain mapping approach to the solution of governing free
boundary problems. Both the classical boundary variation technique and the more versatile
level set method are used to define the design domain. The scalar function defining the level
sets is parameterized using radial basis functions. The level set problem is thus converted into a
parametric optimization problem, which is then solved by a gradient-based method. Numerical
examples are included.
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1. INTRODUCTION

We consider shape and topology optimization of systems governed by the external Bernoulli-
type free boundary problem arising e.g. in the mathematical modelling of free liquid surfaces
and electro-chemical machining. Instead of the direct free boundary problem we consider the
more complex inverse-like problem where the goal is to design a shape of the inner (non-free)
boundary such that the respective free boundary is as close as possible to a given target shape.
In this work we combine the so-called pseudo-solid domain mapping approach and shape op-
timization techniques. The former is used as the solver for the free boundary problem and the
latter to optimize the design. Other techniques have been used e.g. in [1] to solve similar type
of inverse problems.
The paper is organized as follows. In Section 2 we formulate the state problem. We slightly
generalize the free boundary condition compared to earlier papers [2], [3]. In Section 3 we
formulate the design optimization problem and describe briefly how to solve it using a level set
approach. Finally, in Section 4 numerical examples are given.

2. SETTING OF THE STATE PROBLEM

We start with the definition of the state problem represented by an external Bernoulli-type free
boundary problem. Let 𝜔 ⊂ ℝ be a given open set with a sufficiently regular boundary 𝜕𝜔.
Let 𝛾 ∶ ℝ × ℝ → ℝ be a smooth function satisfying 𝛾 ≤ 𝛾 < 0, for a given constant 𝛾. The
state problem consists in finding a set Ω ⊃ 𝜔 and a function 𝑢 ∶ Ω ⧵ 𝜔 → ℝ satisfying

⎧⎪⎪
⎨⎪⎪⎩

Δ𝑢 = 0 in Ω ⧵ 𝜔
𝑢(𝑥) = 1 𝑥 ∈ 𝜕𝜔

𝑢(𝑥) = 0 and
𝜕𝑢
𝜕𝐧(𝑥) = 𝛾(𝑥, 𝜅(𝑥)) 𝑥 ∈ 𝜕Ω,

(1)

where 𝜅(𝑥) is the mean curvature of 𝜕Ω at a point 𝑥. If 𝛾 ≡ 𝛾, then (1) is the classical Bernoulli
free boundary problem.
As the geometry of the free boundary𝜕Ω is an unknown, it must be adjusted during the numerical
solution of (1). There are many different ways to do that [4]. Here we use the so-called pseudo-
solid domain mapping approach (PSA) presented originally in [5] and applied also in [2], [3]. In
PSA, the unknown domain Ω is obtained by applying an appropriate load field to the reference
configuration (“the pseudo solid”) Ω. The load field and the resulting deformation field are then
among the unknowns in the re-formulated free boundary problem. The main advantage of the
pseudo-solid technique is that no explicit parametrization of the unknown free boundary 𝜕Ω
is needed. Moreover, in numerical realization we end up in solving a coupled finite element
problem that can be done with standard tools.
Let Ω ⊂ ℝ be a fixed, simply connected reference domain. Our aim is to construct a mapping
𝐹 ∶ ℝ → ℝ, Ω = 𝐹(Ω) such that Ω solves (1) for a given 𝜔. To construct such 𝐹 we treat Ω
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as an elastic solid that undergoes a small deformation 𝐯 caused by an external loading 𝑝 such
that the deformed solid 𝐹(Ω) defines such Ω, where 𝐹 = id + 𝐯.
We introduce the following function spaces:

𝑊𝜔 = {𝐰 ∈ [𝐻(Ω)] ∣ 𝐰 = 𝟎 in 𝜔}
𝑉𝑐(Ω) = {𝜑 ∈ 𝐻

(Ω) ∣ 𝜑 = 𝑐 in 𝜔}, 𝑐 ∈ ℝ.

Above the symbol𝐻𝑘(Ω) stands for the Sobolev space of functions which are together with their
derivatives up to order 𝑘 square integrable inΩ, i.e. elements of 𝐿(Ω). For any sufficiently small
and regular deformation 𝐰 we define the domain

Ω𝐰 = {𝐱 ∈ ℝ
 ∣ 𝐱 = 𝐱 + 𝐰(𝐱), 𝐱 ∈ Ω}.

The pseudo-solid formulation of the free boundary problem (1) then reads as follows: Find
(𝑢, 𝑝, 𝐯) ∈ 𝑉(Ω𝐯) × 𝐿

(𝜕Ω) ×𝑊𝜔 such that


𝐯

∇𝑢 ⋅ ∇𝜑𝑑𝐱 = 
𝜕𝐯

𝛾𝜑𝑑𝑠 ∀𝜑 ∈ 𝑉(Ω𝐯) (2)


𝜕𝐯

𝑢𝜓𝑑𝑠 = 0 ∀𝜓 ∈ 𝐿(𝜕Ω𝐯) (3)


⧵𝜔

𝜎(𝐯) ∶ 𝜀(𝐰) 𝑑𝐱 = 
𝜕
𝑝𝐧 ⋅ 𝐰𝑑𝑠 ∀𝐰 ∈ 𝑊𝜔 . (4)

Equations (2) and (3) constitute the weak form of the Laplace equation with the mixed boundary
conditions in Ω𝐯 ⧵ �̄�, while equation (4) is the weak form of the linear elasticity problem in
Ω ⧵ 𝜔. Here 𝑝𝐧 is an (unknown) external load and 𝜀(𝐯), 𝜎(𝐯) are the strain and stress tensors,
respectively associated with a displacement field 𝐯, respectively. As the pseudo-solid has no
real physical relevance, the modulus of elasticity and Poisson’s ratio in Hooke’s law can be
chosen to be one and zero, respectively. For the simpler case 𝛾 ≡ 𝛾, the solvability of (2)–(4)
has been analyzed in details in [2]. The solvability of the more general case will be studied
in a forthcoming paper. If (𝑢, 𝑝, 𝐯) is a solution of the coupled system (2)–(4), then the couple
(𝑢𝐯⧵𝜔

, Ω𝐯) solves the original free boundary problem (1).

3. SETTING OF THE SHAPE DESIGN OPTIMIZATION PROBLEM

In the previous section it was assumed that 𝜔 is a given, fixed domain. In what follows we shall
treat 𝜔 as the design that should be chosen to be optimal in some prescribed sense. We restrict
to the case when the free boundary Γ(𝜔) ∶= 𝜕Ω(𝜔) will be driven by the shape of 𝜔 towards a
given target boundary Γ𝑡. Our optimization problem then reads as follows:


Find 𝜔⋆ ∈ 𝒪 such that
𝐽(𝜔⋆) ≤ 𝐽(𝜔) ∀𝜔 ∈ 𝒪 (5)
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a) reference configuration b) deformed configuration

Figure 1. Idea of the pseudo-solid approach.

where𝒪 is a set of admissible designs. The cost functional to be considered is 𝐽(𝜔) = 𝒟(Γ(𝜔), Γ𝑡),
where𝒟 is a function characterizing the distance of Γ(𝜔) from Γ𝑡.
Like in papers [2], [3] we assume that 𝒪 is chosen in such a way that problem (2)–(4) has a
unique solution for any 𝜔 ∈ 𝒪 and that Ω(𝜔) is a star-like domain with respect to the origin
(see [6]). As Γ(𝜔) and Γ𝑡 can now be represented in polar coordinates using radius functions
𝑔𝜔 , 𝑔𝑡, the cost function can be defined simply as

𝐽(𝜔) = 
𝜋


𝑔𝜔(𝜃) − 𝑔𝑡(𝜃)


𝑑𝜃.

In paper [2], also the design domain 𝜔 was assumed to be star-like and was parameterized using
B-splines. It was observed that if 𝒪 contains only star-like domains, then the target Γ𝑡 may
never be matched. Moreover, if the number of the design variables increased, the boundary
𝜕𝜔 became more and more oscillating and fractal-like designs indicating possible topological
changes of 𝜔 was observed in certain cases (see Figure 2).
Indeed, if 𝜔 is star-like and the boundary 𝜕𝜔 is twice differentiable, then the respective free
boundary is of the class 𝐶∞ [6]. Hence if the target free boundary does not belong to 𝐶∞ (as in
the case of Figure 2) then it can never be realized for any such 𝜔.
As it is difficult to predict the topology of the optimal 𝜔⋆ a priori, a spline parametrization of
𝜕𝜔 is not adequate. Therefore techniques of topology optimization are preferred. The most
popular topology optimization techniques have been based on material interpolation schemes
[7] or level set methods based on the solution of the Hamilton–Jacobi equation [8]. In what
follows we shall use a variant of the level set approach using parameterized level set functions
[9].
Let 𝐷 be a larger domain containing all admissible 𝜔. Let 𝜓 ∶ 𝐷 → ℝ, 𝜓 ∈ 𝑈𝑎𝑑 be a given
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Figure 2. Target Γ𝑡 is a “rounded square” and 𝛾 ≡ −1. Increasing the number of design
variables leads to fractal-like design indicating the nonexistence of the minimizer

function and define the set 𝜔 by 𝜔 ∶= 𝜔(𝜓) ∶= 𝐱 ∈ 𝐷 |𝜓(𝐱) > 0 . Here 𝑈𝑎𝑑 is a family of
admissible level set functions such that𝜓 ∈ 𝑈𝑎𝑑 implies𝜔(𝜓) ∈ 𝒪. Clearly this parametrization
does not fix the topology of 𝜔(𝜓).
Next we re-formulate the state problem in such a way that the explicit tracking of 𝜕𝜔 is not
needed. Let 0 < 𝜖 ≪ 1, 0 < 𝛽 ≪ 1, and 𝜓 ∈ 𝑈𝑎𝑑 be given. We introduce the following relaxed
state problem which does not contain explicitly any Dirichlet type boundary conditions:
Find (𝑢, 𝑝, 𝐯) ∈ 𝐻(Ω𝐯𝜖) × 𝐿

(𝜕Ω) × [𝐻(Ω)] such that1


𝐯

∇𝑢 ⋅ ∇𝜑𝑑𝐱 −
𝜕𝐯

𝛾𝜑𝑑𝑠 + 1𝜖 𝐯

𝐻𝛽(𝜓)(𝑢 − 1)𝜑 𝑑𝐱 = 0 ∀𝜑 ∈ 𝐻(Ω𝐯) (6)


𝜕𝐯

𝑢𝜆 𝑑𝑠 = 0 ∀𝜆 ∈ 𝐿(𝜕Ω𝐯) (7)



𝜎(𝐯) ∶ 𝜀(𝐰) 𝑑𝐱 −

𝜕
𝑝𝐧 ⋅ 𝐰𝑑𝑠 + 1𝜖 

𝐻𝛽(𝜓)𝐯 ⋅ 𝐰 𝑑𝐱 = 0 ∀𝐰 ∈ [𝐻(Ω)]. (8)

Here 𝐻𝛽 ∶ ℝ → [0, 1] is the 𝐶 smoothed Heaviside function and 𝛽 > 0 is the smoothing
parameter. The purpose of the penalty terms in (6) and (8) is to release the constraints 𝑢 = 1
and 𝐯 = 𝟎 in 𝜔. We can now define the “relaxed” design optimization problem as follows:

⎧⎪
⎨⎪⎩

Find 𝜓⋆𝜖,𝛽 ∈ 𝑈
𝑎𝑑 such that

𝒥(𝜓⋆𝜖,𝛽) ≤ 𝒥(𝜓) ∀𝜓 ∈ 𝑈𝑎𝑑,
(9)

where 𝒥(𝜓) = 𝒟(Γ(𝜔(𝜓)), Γ𝑡) and Γ(𝜔(𝜓)) is the free boundary corresponding to a level set
function 𝜓.

1We supress, for simplicity, the dependency of (𝑢, 𝑝, 𝐯) on 𝜖 and 𝛽 in notations.
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4. DISCRETIZATION

To discretize the optimization problem, we parameterize the level set function using the com-
pactly supported 𝐶-continuous radial basis functions (RBF) [9, 10]. We introduce a set of 𝑁

basis functions, whose knots {𝑥(𝑖𝑗)} are placed on a regular 𝑁 × 𝑁 grid in the interior of the
domain 𝐷. The RBF associated with a knot 𝑥(𝑖𝑗) is then

𝜓𝑖𝑗(𝑥) = max{0, (1 − 𝑟𝑖𝑗(𝑥))}

(4𝑟𝑖𝑗(𝑥) + 1),

where 𝑟𝑖𝑗(𝑥) = ‖𝑥 − 𝑥(𝑖𝑗)‖/𝑟𝑠 and the constant 𝑟𝑠 > 0 is a given radius of the support of the RBF.
The level set function𝜓 is then approximated by the linear combination𝜓𝜶 = ∑

𝑁
𝑖,𝑗= 𝛼𝑖𝑗𝜓𝑖𝑗. Thus,

the design variables of the RBF parameterized optimization problem are the components of the
vector 𝜶 = (𝛼, 𝛼, … , 𝛼𝑁𝑁).
Like in material interpolation approaches used in topology optimization of stressed structures,
the smoothed and penalized state problem (6)–(8) produces “grey regions” where 0 < 𝐻𝛽(𝜓) <
1. Such regions should only appear near 𝜕𝜔 where 𝑢 is close to one. To prevent appearance of
“nonphysical” grey regions which do not have such interpretation we add the following penalty
term to the cost functional:

𝒫𝜂(𝜓, 𝑢) = 𝜂

𝐻𝛽(𝜓)(𝑢 − 1)

 𝑑𝑥, 𝜂 > 0. (10)

This choice, being purely heuristic, seems to work well in practice.
In the final numerical realization, the penalized state problem is discretized using linear trian-
gular elements. The resulting nonlinear system is solved by Newton’s method with analytic
Jacobian computed using automatic differentation. The smoothing parameter 𝛽 is related to
∇𝜓 and the local local element size ℎ, and is gradually decreased during the optimization as
described in [3].

5. NUMERICAL EXAMPLES

In this section we illustrate the performance of the proposed method in case of a non-constant
boundary flux 𝛾. In all examples the target Γ𝑡 is the square of size 4whose each corner is rounded
using a quarter of a circle of radius 1.
The values of the penalty parameters are 𝜖 = 10− and 𝜂 = 0.1. We used the gradient based
optimizer Donlp2 [11]. The gradient of the cost function was computed using automatic differ-
entiation and adjoint techniques presented in [12], [3].

Example 1 Let the boundary flux be given as 𝛾(𝑥) = −1 + 

𝑥, i.e. it depends on the second

spatial coordinate.
The reference domain Ω was discretized using 8300 linear triangular elements. The number
of RBFs used was 30 × 30. The initial value of the cost functional and the penalty term was
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𝒥 = 8.245 × 10−, 𝒫𝜂 = 1.822 × 10
−, respectively. After 1181 optimization steps (and 4528

cost function evaluations) these values reduced to𝒥 = 8.320 × 10−, 𝒫𝜂 = 1.098 × 10
−.

The obtained approximation of optimal inner domain 𝜔⋆ is represented in Figure 3(left) as the
contour line 𝐻𝛽 = 0.99. The contour plot of the corresponding state solution 𝑢ℎ is shown in
Figure 3(right).

Figure 3. The equipotential contours 𝐻𝛽 = 0.99 (left) and
𝑢ℎ = 0, 0.1, 0.2, ..., 0.8, 0.9, 0.99 (right) related to Example 1.

Example 2 In this example 𝛾(𝑥, 𝜅) = −1 − 

𝜅, i.e. 𝛾 depends on the mean curvature of the free

boundary.
This time the optimizer needed 776 iterations and 3309 function evaluations. The final values
of the cost and the penalty term are𝒥 = 1.788 × 10− and𝒫𝜂 = 1.200 × 10

−, respectively.
The obtained approximation of the optimal inner domain 𝜔⋆ is depicted in Figure 4(left) as a
contour line 𝐻𝛽 = 0.99. The contour plot of the corresponding state solution 𝑢ℎ is shown in
Figure 4(right).

6. CONCLUSIONS

We have considered topological shape optimization problems with the state constraint given by a
free boundary problem of Bernoulli type. To solve efficiently the free boundary problems during
the optimization, the pseudo-solid domain mapping approach is applied. Its main advantage is
that there is no explicit parametrization of the shape of the free boundary using e.g. splines.
The novelty of the numerical method proposed in this paper is the combination of the pseudo-
solid approach to tackle the free boundary problem with a non-constant boundary flux using a
parameterized level set method for shape optimization. It has been found already in [2] that the
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Figure 4. The equipotential contours 𝐻𝛽 = 0.99 (left) and
𝑢ℎ = 0, 0.1, 0.2, ..., 0.8, 0.9, 0.99 (right) related to Example 2.

problem is very badly conditioned as many different choices of 𝜔 may lead to nearly identical
free boundaries. Therefore the progress of the optimization is often slow. The proposed method
can be applied in an analogous way to topology optimization problems governed by other free
boundary problems.
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