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Summary. The aim of the present paper is to present ways how lower and upper limits for the 
range of possible fictitious elastic constants (tensile stiffness and Poisson’s ratio) can be 
determined for one fabric material on the basis of different established test and determination 
procedures. In the structural analysis this range of fictitious elastic constants results in a 
spectrum of computed stress and deformation values for one and the same structure and load 
case. The possible range of structural analysis results due to that variety of possible stiffness 
parameters is demonstrated for one exemplary membrane structure with different magnitudes 
of curvature.  

 
 
1 INTRODUCTION 

Although woven fabrics show a highly non-linear load-strain-relationship under uniaxial or 
biaxial tension, it is common in the daily practice, that simple elastic constants are used in the 
structural analysis of membrane structures. As such a set of maximal three independent elastic 
constants is not able to cover the complex biaxial load-strain-behaviour of fabrics, elastic 
constants have to be seen as fictitious stiffness parameters. However, usually biaxial tensile 
tests are conducted in order to determine these fictitious elastic constants from the resulting 
load-strain-paths. But: different existing test procedures1,12 and different determination 
procedures2, 3, 4 may lead to a wide range of values for the resulting fictitious elastic constants. 
Furthermore, different interpretations of the established procedures are common. 

In the recent past5,10 it could be demonstrated that the material behaviour is of great 
importance for the structural analysis of woven fabrics, especially with regard to the 
nowadays more and more minimally curved or even flat structures. The present contribution 
will give a state of the art report of the currently published test and determination procedures 
used for the characterization of the material behaviour of woven fabrics. The aim is to present 
a way how lower and upper limits for the range of possible fictitious elastic constants can be 
determined for one fabric material based on test data obtained from the different established 
test and determination procedures. In the structural analysis this range of fictitious elastic 
constants results in a spectrum of computed stress and deformation values for one and the 
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same structure. For one exemplary basic form of a tensile structure – a simple hypar – the 
spectrum of computed stresses and deformations, which can possibly occur for a Glass/PTFE-
material in the design practice, will be determined by means of the obtained ranges of 
fictitious elastic constants. 

2 THE ORTHOTROPIC LINEAR-ELASTIC CONSTITUTIVE LAW 
For the use in a structural analysis where the membrane is modeled as a continuum – and 

not as a cable net –, the actual anisotropic highly nonlinear stress-strain-behaviour of woven 
fabrics is considered as a linear-elastic orthogonal anisotropic plane-stress structure. For 
practical reasons, nowadays the design engineers are forced to use this assumption in 
commercial as well as inhouse design software, although it is known that this procedure is a a 
rather rough approximation. One possible mathematical formulation for the load-strain-
relationship – known from classical mechanics – is given with the following elementary 
equations 
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Herein, ε are the strains [-] and n are the loads [kN/m], which are often called stresses in 
membrane structure analysis. The four elastic constants are: Ext as the tensile stiffness in warp 
direction [kN/m] and Eyt in fill direction, respectively. Generally, the axes x and y refer to the 
warp and the weft (fill) yarn direction of the fabric. The transverse strains are taken into 
account by the Poisson’s ratio ν. νxy is the Poisson’s ratio in x-direction caused by a load in y-
direction, νyx applies analogue in perpendicular direction. Transposed to the loads n and 
written with matrices this law becomes 
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The linking matrix between the loads on the left side and the strains on the right side of the 
equation is the stiffness matrix. The stiffness matrix has to be symmetric, what directly leads 
to  

x
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It can be seen from eq. (4) that only three of the four elastic constants are independent of 
each other. Furthermore, the stiffness matrix has to be positive definite, which means that the 
tensile stiffnesses and the determinante of the stiffness matrix have to be positive. The latter 
constraint leads to  

xy yx 1.ν ⋅ν <  (5)
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Another possible formulation of the constitutive law can be given by 

11 111111 1122

1122 222222 22
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E En
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 (6)

Herein E1111 and E2222 are the tensile stiffnesses in warp and weft direction, respectively, 
and E1122 is the stiffness interaction between warp and weft direction. In the notation of eq. (6) 
the stiffness matrix is directly symmetric. The two mathematical formulations in eq. (3) and 
(6) of the same constitutive law result in identical analysis results. Special attention has to be 
paid, as the numerical values of the elastic constants of both definitions are not equal6. But the 
elastic constants of both definitions can easily be converted by the following equations: 
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3 BIAXIAL TESTS AND THE DETERMINATION OF ELASTIC CONSTANTS 
Many different published and unpublished biaxial test procedures and related evaluation 

procedures exist today. Two common test procedures are described in the Japanese standard 
MSAJ/M-02-19952 and in the TensiNet European Design Guide for Tensile Surface 
Structures4. Additional test procedures are described in [1,12]1,12..Furthermore, unpublished, 
office specific as well as project specific test procedures are oftentimes used by the 
engineering design offices. To every test procedure one or more related evaluation procedures 
exist to determine elastic constants from the biaxial test results. This situation leads to a 
confusing variety of elastic constants.  

Selected test and evaluation procedures, based on the common recommendations of 
MSAJ/M-02-1995 and the TensiNet Design Guide, are introduced in the next paragraphs. The 
objective of both recommendations is to determine one single set of “fictitious” elastic 
constants from the biaxial test results which are intended to be used for the practical structural 
analyses of all kinds of structural forms and all load cases.  

3.1 The Japanese standard MSAJ/M-02-1995 
The main characteristic of the Japanese standard MSAJ/M-02-1995 is that five different 

predefined load ratios warp:fill – 1:1, 2:1 1:2, 1:0 and 0:1 – are consecutively applied on a 
cross shaped test specimen with the yarns parallel to the arms of the cross. During the loading 
and unloading procedure the load ratio warp:fill is held constant. The maximum tensile test 
load is fixed to ¼ of the maximum strip tensile strength of the material. The result of this test 
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procedure is a load-strain-diagram as exemplarily shown in figure 1(a). From this complete 
set of test data ten load-strain-paths can be extracted – one for each yarn direction for the five 
load ratios –, see figure 1(b). 

Load‐strain‐diagram 
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(a)                                                                                       (b)  

Figure 1: (a) Load-strain-diagram as a result of a MSAJ biaxial test on Glass/PTFE material, 
(b) ten load-strain-paths (warp/weft at five load ratios), as extracted from the diagram 

 
The commentary of MSAJ/M-02-1995, which is an inherent component of the standard, 

recommends to determine one single design set of elastic constants from the extracted load-
strain-paths stepwise in a double step correlation analysis. In the first step each curved loading 
path has to be substituted by a straight line. In the second step the slopes of the straight lines 
obtained in the first step have to be modified in such a way that they satisfy the equations of 
the assumed linear-elastic constitutive law. The MSAJ-commentary uses the formulation of 
eq. (1) and (2) or eq. (3), respectively. To determine the “optimum” set of elastic constants 
several methods are proposed, e.g. “least squares method minimizing the sum of squares of 
the strain term”, “least squares method minimizing the sum of squares of the stress term” and 
other simplified methods. The resulting sets of elastic constants differ more or less. As this 
procedure can not be solved “by hand”, a correlation analysis routine has been programmed at 
the Institute for Metal and Lightweight Structures7. However, the MSAJ-commentary 
recommends to disregard the zero-load-paths, i.e. the weft-path at 1:0 and the warp-path at 
0:1, so that only eight out of the ten extracted load-strain-paths are used for the determination 
of the elastic constants. According to the commentary, this is because the testing method had 
low repeatability of test results in the low stress range. 

3.2 The TensiNet European Design Guide 
The TensiNet Design Guide4 proposes a completely different loading procedure. An 

appreciable prestress is initially applied to the test specimen and is hold constant for a – 
undefined – period of time. After that, one direction of the cross shaped specimen (e.g. warp) 
is loaded while the perpendicular direction (weft) holds the constant prestress at the same 
time. This means, that the load ratio warp:weft changes continuously while loading and is not 
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constant over time like in the MSAJ-procedure. The loading procedure is repeated five times. 
Afterwards the procedure is inversed, i.e. the weft direction is loaded five times while the 
warp direction holds the constant prestress. This loading procedure shall approximate a 
typical loading by wind followed by a snow loading – or the other way around – in an 
anticlastic structure. The decision on the amount of prestress and the maximum test load is 
left to the design engineer in each case – although some recommendations are given.  
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(a)                                                                                       (b)  

Figure 2: (a) Exemplary loading procedure according to TensiNet Design Guide, 
(b) strain-time-diagram in warp and weft direction as the result  

 
For the determination of elastic constants the constitutive law as stated in eq. (6) is used. In 

each loading direction, one of the five load steps is chosen to read out the corresponding strain 
differences Δε in each fabric direction, see figure 2, firstly for the loading interval Δn11 (where 
Δn22=0) and secondly for the loading interval Δn22 (where Δn11=0). On the basis of eq. (6), 
herewith the following eqs. (11) and (12) can be filled for the first part and eqs. (13) as well as 
(14) for the second part of the loading procedure: 

11 1111 11 1122 22n E EΔ = Δε + Δε  (11)

1122 11 2222 220 E E= Δε + Δε (12)

1111 11 1122 220 E E= Δε + Δε (13)

22 1122 11 2222 22n E EΔ = Δε + Δε (14)

As the result, four equations with the three unknown elastic constants are established. A 
usual practical approach to solve this – mathematically unsolvable – problem is to determine 
two sets of elastic constants and average the results. 

4 SPECTRUM OF FICTITIOUS DESIGN STIFFNESS PARAMETERS  
Recently a discussion on the determination of elastic constants had been started and 

modifications of existing evaluation procedures have been proposed, resulting in a great 
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variety of values for the “fictitious” elastic constants. In this paragraph, some selected sets of 
elastic constants are presented, which can be obtained for one and the same exemplary 
material. For this purpose, a Glass/PTFE-material with a tensile strength of 140/120 kN/m in 
warp and weft direction has been tested in the Essen Laboratory for Lightweight Structures 
(ELLF). On the basis of these tests, different sets of elastic constants have been determined at 
the Institute for Metal and Lightweight Structures (IML) at the University of Duisburg-Essen. 
All test specimens were taken from one batch. The results are given in tables 1 and 2, starting 
with the set of elastic constant obtained from the original MSAJ-test and determination 
procedure, see determination option (DO) 1.  

 
Table 1: Different sets of elastic constants obtained by different determination options from one and the 

same set of MSAJ-test data for a Glass/PTFE-material with a tensile strength of 140/120 kN/m 

Determination option (DO) 
Tensile stiffness 

[kN/m] 
Poisson’s ratio 

[-] νxyνyx 
Ext Eyt νxy νyx 

1 
Original MSAJ-determination: 8 load-
strain-paths evaluated (zero-load-paths 

omitted) 
1300 770 0.55 0.93 0.51 < 1  

2 MSAJ modified: All ten load-strain-paths 
evaluated (Bridgens&Gosling)8 

930 
(752)* 

590 
(611)* 

0.82 
(0.88)*

1.29 
(1.08)* 

1.06 > 1 
(0.95 < 1)

3 
Particular for plane structure: MSAJ-

load-ratios 1:1, 2:1, 4 load-strain-paths 
(IML, Univ. of Duisburg-Essen)7 

1920 1020 0.42 0.79 0.33 < 1 

4 

Particular for anticlastic structure and 
load case with warp stressing: MSAJ-

load-ratios 1:0, 2:1, 4 load-strain-paths 
(IML, Univ. of Duisburg-Essen)7 

890 240 0.49 1.82 0.89 < 1 

min/max 890/ 
1920 

240/ 
1020 

0.42/ 
0.82 

0.79/ 
1.82 

0.33/ 
1.06 

* Values in brackets are directly taken from literature8. These values were determined by Bridgens & 
Gosling on the basis of biaxial tests conducted by themselves on the same material but from another 
batch. 
 
Bridgens&Gosling8 have emphasized, that the zero-load-paths of the load ratios 1:0 and 

0:1 – which are omitted in the MSAJ determination procedure, see above – are highly relevant 
for the critical design case of anticlastic membrane structures. Based on the biaxial test 
procedure of the MSAJ/M-02-1995 they have discussed results, which were obtained when 
taking the zero-load-paths into account. Due to mathematical reasons, the tensile stiffnesses 
decrease and the Poisson’s ratios increase compared to the original MSAJ procedure (omitting 
the zero-load-paths), see DO 2. In the present determination, the product of the Poisson’s 
ratios exceeds 1.0 and therefore, this set of elastic constants cannot be used in a structural 
analysis. Due to that the exemplary analysis in paragraph 5 will be conducted using the values 
in the brackets for DO2. 

As for the load ratios 1:0 and 0:1 a good correlation between measured load-strain-paths 
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and calculated straight lines can (for Glass/PTFE-materials) only be obtained with big values 
for the Poisson’s ratio (ν>1) while for other load ratios (1:1, 2:1) considerable smaller values 
are required (e.g. ν<0.5)9, it is impossible to model all load-strain-paths with only one single 
set of elastic constants. This problem can be solved if the elastic constants are determined 
particularly for a specific structure and a specific load case7. This means, e.g. for an anticlastic 
membrane structure with predominant warp stressing under one load case, that the load ratios 
2:1 and 1:0 might be reasonable. In this case, the load ratios 1:2 and 0:1 have to be picked out 
for opposite loading. For plane and synclastic structures as well as anticlastic structures with 
very small curvature, the load ratios 1:1 and 2:1 fit best. For the exemplary analysed 
structures in paragraph 5 this proposal leads to the set of elastic constants shown under DO 3 
for the plane structure and DO 4 for the two anticlastic structures. 

To determine elastic constants according to the TensiNet Design Guide, two tests have 
been conducted in the Essen Laboratory for Lightweight Structures. To enable a direct 
comparability to the MSAJ-procedure, firstly, a biaxial test with the same maximum tensile 
load of 30 kN/m as for the MSAJ-test has been chosen. The biaxial test has been conducted 
with material from the same batch as for the MSAJ-test. The prestress has been chosen to be 2 
kN/m in each fabric direction so that it equals the minimum load of the load-strain-path on 
which the MSAJ-determination is based on. This value is fixed by the MSAJ-commentary to 
be 2 kN/m for Glass/PTFE-materials. Elastic constants have been determined with the second 
loading cycle. The results are shown in table 2 for both: as defined in eq. (6) and for a better 
comparability as defined in eq. (3), too. The determination results reveal much bigger elastic 
constants than those obtained by the MSAJ procedure, for the tensile stiffness as well as for 
the Poisson’ ratios. The latter ones give a product νxyνyx > 1, which means, that this set of 
constants is unfeasible for a structural analysis, see explanations above. 

In the second test, the maximum test load range was much smaller. Oriented towards the 
expected maximum membrane stress, a value of 13 kN/m was chosen. The prestress has been 
chosen to be 3 kN/m in each fabric direction as supposed to be in the exemplary structure 
analysed in paragraph 5. From the results in table 2 it can be seen that all values of the elastic 
constants decrease compared to the first test procedure. However, the product of the Poisson’s 
ratios still clearly exceeds 1.0.  

Table 2: Two sets of elastic constants obtained by the TensiNet Design Guide test and determination 
procedure with prestress 2 kN/m (Test No 1) and 3 kN/m (Test No 2) and maximum test loads of 30 kN/m 
(Test No 1) and 13 kN/m (Test No 2) for a Glass/PTFE-material with a tensile strength of 140/120 kN/m 

Test 
No 

Elastic constants according to 
eq. (6) [kN/m] Elastic constants according to eq. (3) 

E1111 E2222 E1122 
Tensile stiffness 

[kN/m] 
Poisson’s ratio 

[-] νxyνyx 
Ext Eyt νxy νyx 

1 -1180 -640 -1560 2460 1340 1.32 2.42 3.19 >> 1 
2 -3015 -1190 -2360 1660 660 0.78 1.98 1.54 > 1 

 
This problem occurs especially for Glass/PTFE-materials, which show considerable 

transverse strains, and especially for very big and very small values of load ratios warp:weft, 
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where the transverse strains show big absolute values. In the second conducted test the load 
ratio at maximum test load was 13:3 = 4.3 (and 3:13 = 0.23, respectively). For the analysed 
Glass/PTFE-material, the test and determination procedure of the TensiNet Design Guide 
leads even for that relatively low load differences between warp and weft to very high values 
of Poisson’s ratios. Similarly high Poisson’s ratios could be obtained from MSAJ test results, 
if tried to determine one set of elastic constants from the four load-strain-paths of the load 
ratios 1:0 and 0:1. It can be realized from this comparison, that it is difficult and probably 
quite often inappropriate to try to cover all loading situations (wind and snow) of a membrane 
structure with only one single set of elastic constants. 

This enormous spectrum of elastic constants could be used by design engineers for one and 
the same material – excluding the unfeasible ones (table 1 DO2 and table 2) of course. 
Consequently, the question arises whether this spectrum of elastic constants has a significant 
influence on the stress and deformation results in the structural analysis or whether the 
influence is negligible. This question shall be answered in the following paragraph.  

5 INFLUENCE OF THE FICTITIOUS STIFFNESS PARAMETER SPECTRUM ON 
THE STRUCTURAL ANALYSIS RESULTS 

The quantitative influence of the spectrum of fictitious elastic constants obtained in 
paragraph 4 is exemplarily examined by means of a 10x10 m square hypar with two high 
points and two low points (a saddle shaped example is given by the authors, too10). The edges 
are fixed. Prestress is chosen to be isotropic with p = 3.0 kN/m in the main anisotropic fabric 
directions. The shear modulus is supposed to be G = 50 kN/m. The structural analysis is 
conducted with the finite element software package SOFiSTiK 201211 applying a third order 
analysis. The structure is vertical loaded downwards with q = 0.60 kN/m2. 

Three different curvatures are analysed, from h = 0 m (plane structure) up to h = 4 m, see 
figures 3 and 4. The warp direction is running between the high points, so that for the curved 
variations of the structure the warp direction is stressed for a downward load while in the weft 
direction the prestress decreases. Load ratios of approximately 4:1 and greater occur in the 
center of the structure. Thus, the four measured load-strain-paths of the MSAJ load ratios 1:0 
and 2:1 are picked out to determine the elastic constants for DO 4 in table 1. The plane 
variation of the structure is characterized by load ratios between 1:1 and 2:1. Correspondent to 
that, elastic constants for DO 3 are determined based on the four load-strain-paths of these 
two load ratios. 

Figure 4 shows the resulting membrane warp stress nw as the result of the structural 
analyses for the three sets of elastic constants of DO 1 to DO 3 (DO3 is replaced by DO 4 for 
the curved structures, respectively) as warp stress (nw)-Poisson’s ratio (νxy)-diagrams. The 
stress value is always given for the middle of the membrane, although the maximum stress 
occurs sometimes at other locations. The nw-νxy-diagrams emphasize the importance of the 
Poisson’s ratio. The Poisson’s ratio νxy corresponding to each set of elastic constants in table 
1 are marked in the diagrams.  

In the plane structure, the set of constants of DO1 results in nw = 12.3 kN/m while DO2 
results with nw = 22.5 kN/m in an over 80% greater stress value, although the tensile stiffness 
is considerable smaller. The reason can immediately be identified in the nw-νxy-diagram as the 
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influence of the high value of Poisson’s ratio νxy. In the curved structures with h = 2.0 m and 
h = 4.0 m the set of elastic constants from DO2 also results in 60%-75% greater stresses 
compared to the results from DO1. The results of DO3 (plane structure) and DO4 (curved 
structures) lay in between. 

On the one hand, it can be seen from the curves closing ranks that with increasing 
curvature the influence of the material stiffness parameters decrease. But on the other hand, 
the concrete sets of elastic constants demonstrate their enormous importance, especially the 
high magnitudes of Poisson’s ratios. This emphasizes the role of Poisson’s ratio as part of a 
whole set of elastic constants. A comparison or assessment only of the tensile stiffnesses – as 
done sometimes – is not sufficient. 

h
warp

weft

 
Figure 3: Simple hypar with 2 low points and 2 high points and fixed edges for the exemplary analyses 

 
Figure 5 shows the influence of the spectrum of fictitious elastic constants on the 

deflection results. In the plane structure max fz varies between 20 cm (DO2) and 39 cm (DO1 
and 3), which is a variation of almost factor 2. For the curved structures, the deflections 
decrease considerably as expected. But the results also show a variation of 60%-70%. That 
means, that the deflections may possibly be underestimated by a factor of up to 2, which can 
lead to damages of the membrane in case of hitting the primary structure. 

This exemplary structural analysis demonstrates the immense range of stress and deflection 
results due to a great variety of fictitious elastic constants that could be used by design 
engineers for one and the same material product. None of the underlying determination 
options is validated by static load tests on curved structural components, which means that the 
real stresses and deflections are left unknown to the engineer. 

6 CONCLUSIONS 
Nowadays, the highly nonlinear anisotropic material behaviour of woven fabrics is 

simplified to a linear-elastic orthotropic plane stress material in order to conduct the structural 
analysis. The existing variety of recommendations to determine elastic constants from biaxial 
test results – which was shown to result sometimes in unfeasible sets of elastic constants –  
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Figure 4: Maximum membrane stress nw in the middle of hypar structures with three different curvatures 

obtained with three different sets of elastic constants from table 1 
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Figure 5: Maximum deflection fz in the middle of hypar structures with three different curvatures obtained 
with three different sets of elastic constants from table 1 
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leads to a great spectrum of values, which design engineers can possibly use for their 
calculations for one and the same material. It was the aim of the present contribution to 
demonstrate the importance of this stiffness parameter spectrum on the stress and deformation 
results, which were found to be considerably high. Design engineers should have this issue on 
mind. The development of an European design standard for membrane structures as well as a 
European standard for biaxial testing – in which the authors are involved – is currently under 
way. This, together with the related research, hopefully leads to a better understanding for the 
determination of elastic constants and a more unified approach in the structural analysis. 
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