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1. Introduction

Scope of this work

We want the mechanical 

response of the structure, 

with an accurate 

characterization of the 

material mechanical 

performance (meso-scale).

With complex materials, constitutive 

equations are not enough.



1. Introduction

Information exchange between the models

Information can be exchanged in one direction or bi-directionaly:

• Linear analysis and/or

non-linear prediction

• Full non-linear analysis

FE2 NLS

32d 14h 46’ 11h 36’

In this last case, unless using some 

optimization procedure (Otero et 

al. 20151) the computational cost 

can be extremely expensive
Core/Ext. laminae = 247261/108041 elements

1. F. Otero et al. “An efficient multi-scale method for non-linear 

analysis of composite structures” Composite Structures 131, 2015



1. Introduction

Information exchange between the models

Current work is not focused on the amount of exchanges between the 

models, but on the amount of information shared in those exchanges. 

In the macro-model, the material deformation in current configuration 

can be expressed as a Taylor series expansion around X0:

Depending on how many terms of the series we use, we will have a:

• First order theory

• Second order theory

This information can be also sent to the micro-model in order to 

improve its performance. 
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Formulation



2. Formulation

First Order and Enhanced First Order 

First Order:

Enhanced First Order:

Microscopic displacement field:



2. Formulation

First Order homogenization

Admissible displacements and Boundary conditions:

The problem is solved applying periodic boundary fluctuations. This is, 

imposing w sufficiently regular so that:

The averaging equation states that:

Therefore:



2. Formulation

First Order homogenization

Microscopic Boundary Value Problem:

Macroscopic Stress Tensor:

Microscopic Strain Field:



2. Formulation

Enhanced First Order homogenization

Admissible displacements and Boundary conditions:

Therefore, it is necessary to fulfil again:

The first average theorem states that:

Choosing wisely the RVE (origin in its center):



2. Formulation

Enhanced First Order homogenization

Extra boundary condition:

As a natural extension of the first average theorem, the following 

relation between both scales must be fulfilled:

Which can be achieved with this extra boundary condition:

Microscopic strain field:

Microscopic strain depends 

on the size of the RVE!



2. Formulation

Enhanced First Order homogenization

Macroscopic Stress Tensor:

is equivalent to the bending-extension coupling matrix in shells and 

beam elements. In order to use it, it is necessary to have these sort of 

elements. 

To simplify this formulation in solid elements, 

it is necessary to have a RVE with symmetry 

in the material distribution around its center. 

With this RVE, = 0 , and therefore:
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3. Numerical example

Numerical example – Cantilever beam 

Mesh Elements L (mm)

Macro1 8x1x2 1,3525

Macro2 16x2x4 0,6762

Macro3 32x4x8 0,3381

Macro4 64x8x16 0,1691

Properties E     (GPa) v

Matrix 4,52 0,36

Long. Fiber (40%) 235 0,21

Model Elements Theory

LE&FO Linear First-order

QE&FO Quadratic First-order

QE&EFO Quadratic Enhanced-first-order

Properties E (GPa)

Homg mat. 26.56

1

2



3. Numerical example

Cantilever beam – Homogeneous material

Microstructure Results

Sxx (MPa) LE&FO % QE&FO % QE&EFO %

Macro1 69,43 30,57 86,08 13,92 98,66 1,34

Macro2 84,02 15,98 93,00 7,00 99,59 0,41

Macro3 91,82 8,18 96,50 3,50 99,87 0,14

Macro4 95,86 4,14 98,25 1,75 99,96 0,04

Analytical Sol. 

Sxx = 100 MPa

QE&EFO

QE&FO

LE&FO



3. Numerical example

Cantilever beam – Homogeneous material

Macrostructure Results

Rz (N) LE&FO % QE&FO % QE&EFO %

Macro1 679,09 13,18 600,43 0,07 600,43 0,07

Macro2 620,03 3,34 600,12 0,02 600,12 0,02

Macro3 605,09 0,85 600,09 0,01 600,09 0,01

Macro4 601,34 0,22 600,08 0,01 600,08 0,01

LE&FO

QE&FO

QE&EFO

Analytical Sol.

Rz = 600 N



3. Numerical example

Cantilever meam – Composite material

Microstructure Results

Sxx (MPa)
Fiber Matrix

LE&FO QE&FO QE&EFO LE&FO QE&FO QE&EFO

Macro1 454,56 543,31 616,13 11,11 11,18 14,10

Macro2 534,71 584,90 622,41 11,69 12,01 13,67

Macro3 578,97 606,60 625,56 12,23 12,46 13,25

Macro4 603,02 617,54 627,07 12,53 12,68 12,98

LE&FO QE&FO QE&EFO



4. Discussion

Discussion



4. Discussion

Are second order terms really needed?

Homogenization methods are an improved procedure to characterize 

the material response. 

• Do we need to know the failure mechanism of the material?

• Do we need to characterize the material non-linear behavior of the 

structure?

YESNO

2nd order terms are NOT NEEDED

They increase the computational cost of the 

numerical analysis and they do not improve it.



4. Discussion

Are second order terms really needed?

Is the main aim of the simulation to characterize the micro-structure or 

the macro-structure?

YES

Including 2nd order terms will provide a better 

characterization of the material failure mode, however, 

not always this improved characterization is required. 

In most cases, it is more useful to improve the 

discretization of the macro-structure than to have a 

detailed prediction of the material performance.



4. Discussion

Are second order terms really needed?

micro-structure

In this case the 2nd order terms can become a requirement for the 

correct prediction of material failure. 

Taking into account 2nd order terms allows considering loading cases 

that cannot be taken into account with a first order approach (i.e. 

bending modes). 

Therefore, there will be some failure modes that will not be 

characterized unless these terms are used. 



4. Discussion

There are some drawbacks

• Non-linear analysis using multi-scale methods are really expensive.

• Including 2nd order terms:

o Increases also the computational cost of the analysis.

o Makes necessary to account for the size of the microstructure 

Representative Volume Element.

o Requires a RVE with a symmetric material distribution around its 

center.
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