Accelerating multi-scale microstructure simulations by exploiting local macroscopic quasi-homogeneities

J. Gawad 1 Md. Khairullah 1 D. Roose 1 A. Van Bael 2

¹Dept. of Computer Science, KU Leuven, Belgium jerzy.gawad@cs.kuleuven.be

²Dept. of Metallurgy and Materials Engineering, KU Leuven, Belgium

ICME workshop 13 April 2016, Barcelona

J. Gawad et al.

Accelerating multi-scale microstructure simulations

Outline of the HMS modelling framework

M2Form

Accelerating multi-scale microstructure simulations

Outline of the HMS modelling framework

M2Form

Accelerating multi-scale microstructure simulations

Computational advantage of the HMS

How much can we save in terms of the simulation time?

For example:

Crystal Plasticity fully embedded in an explicit time integration FE:

1 call/update to the fine-scale CP model per increment of the coarse-scale FE model

 $t_{CPFEM} \approx 100.000 \text{ updates} \times 20.000 \text{ integration points} \times t_{CP} + t_{FE}$

HMS: Crystal Plasticity hierarchically coupled with FEM: $t_{HMS} \approx 30 \text{ updates} \times 20.000 \text{ integration points} \times t_{CP} + t_{FE}$

J. Gawad et al.

Contributions to the computational cost of multi-scale CP-FEM

The HMS addresses the issue:

- in the temporal dimension: reconstruction of the plastic potential function is adaptively conducted only at the moments when a given deformation-based criterion is satisfied.
- in the spatial dimension: another acceleration is possible!

Acceleration of the multi-scale CP models by exploiting spatial quasi-homogeneities

Fundamental assumptions:

- Similar microstructural state variables subjected to a similar deformation history would evolve along nearly identical trajectories.
- Derived macroscopic plastic properties would be similar as well. Additional assumption:
 - The accumulated plastic strain determines the evolution of the material properties.

J. Gawad et al.

M2Form

Exploiting spatial quasi-homogeneities

control field variables: *total plastic slip*, *accumulated plastic strain*, *equivalent plastic strain* . . . Integration points grouped together (clustered):

material state: *microstructure (texture, substructure, ...), plastic potential function, ...*

material properties: plastic potential function, hardening, ...

J. Gawad et al.

M2Form

Accelerating multi-scale microstructure simulations

J. Gawad et al.

J. Gawad et al.

Accelerating multi-scale microstructure simulations

J. Gawad et al.

Accelerating multi-scale microstructure simulations

But it has to be decided when and how the clusters should be formed.

J. Gawad et al.

Accelerating multi-scale microstructure simulations

Clustering schemes and clustering criteria

Clustering scheme decides when the clusters are formed. Several schemes can be considered, including:

- 1. **static**: the clusters are constructed once and later used throughout the simulation.
- 2. **dynamic**: the cluster are adaptively rebuilt as the HMS simulation advances.

Clustering criterion decides how the integration points are grouped into the clusters.

- primary criterion: spatial proximity of the integration points
- secondary criteria:
 - 1. magnitude of total plastic slip, or
 - 2. plastic strain tensor,
 - 3. sum of the absolute values of plastic strain increment tensors,

4. ...

Static spatial clustering

The algorithm in a nutshell:

- ▶ Parameter: number of clusters k.
- Initialization: all integration points belong to a single cluster
- Given the control field variable and the Euclidean distance matrix, construct k clusters and use these clusters throughout the simulation.

The inputs may be taken from:

- ▶ a plain FE simulation (non-HMS) of the process (off-line), or
- the HMS simulation itself, for instance when the first update of properties is calculated (on-line)
- ► a reference HMS simulation (off-line, very impractical)

Static spatial clustering in HMS: performance gain vs accuracy

Example: tensile test on a complex geometry specimen

Accelerating multi-scale microstructure simulations

Example: torque bar, 9 clusters

- Example: a bar subjected to torsion followed by tension.
- The two deformation steps introduce a non-monotonic strain path.

M2Form

J. Gawad et al.

Accelerating multi-scale microstructure simulations

Example: torque bar, 9 clusters

- Example: a bar subjected to torsion followed by tension.
- The two deformation steps introduce a non-monotonic strain path.

M2Form

J. Gawad et al.

Accelerating multi-scale microstructure simulations

Example: torque bar, 9 clusters

- Example: a bar subjected to torsion followed by tension.
- The two deformation steps introduce a non-monotonic strain path.

M2Form

J. Gawad et al.

Accelerating multi-scale microstructure simulations

KU LEUVEN

Static spatial clustering in HMS

Example: torque bar, 27 clusters

J. Gawad et al.

Accelerating multi-scale microstructure simulations

KU LEUVEN

Static spatial clustering in HMS

Example: torque bar, 27 clusters

J. Gawad et al.

Accelerating multi-scale microstructure simulations

Example: torque bar, 27 clusters

- Static clustering does not follow the evolution of the control field variable.
- Not much can be gained by simply increasing the number of clusters – an adaptive approach is needed.

J. Gawad et al.

Accelerating multi-scale microstructure simulations

Dynamic adaptive clustering

- Parameter: threshold value t_{split}.
- Initialization: all points belong to a single cluster
- ► At each updating event, consider splitting each existing cluster *C*:
 - 1. $\Delta_{max}v = \max_{i \in C}(v_i) \min_{i \in C}(v_i)$, where v is the control field variable.
 - 2. If $\Delta_{max} v \ge t_{split}$, re-cluster *C* into new clusters C_1, \ldots, C_n that inherit the extended material states from the representative of *C* to the new representatives of C_1, \ldots, C_n .
- A high threshold value permits the clusters to persist longer; fewer clusters are generated overall, resulting in a high speedup but lower accuracy.

Dynamic clustering: the "split" operation

Local operation on a limited number of integration points

- ► think of divisive hierarchical clustering: O(N²), or DBSCAN or OPTICS: O(n log n))
- Direct back-traceability of the fine-scale model state variables

M2Form

J. Gawad et al.

KU LEUVEN

Dynamic adaptive clustering: results

Example: torque bar, high threshold for splitting

M2Form

Accelerating multi-scale microstructure simulations

KU LEUVEN

Dynamic adaptive clustering: results

Example: torque bar, low threshold for splitting

M2Form

Accelerating multi-scale microstructure simulations

Approximation error: material properties

Reference HMS vs. clustering-enabled HMS

In terms of plastic potential function ψ , the relative error at integration point *i*:

$$e_i^{\psi} = rac{1}{m} \sum_{j=1}^m |rac{\psi(\mathbf{D}_j)_i - \psi'(\mathbf{D}_j)_{cr(i)}}{\psi(\mathbf{D}_j)_i}| imes 100\%$$

Error for the whole model:

$$\bar{e^{\psi}} = \frac{1}{n} \sum_{i=1}^{n} e_i^{\psi},$$

J. Gawad et al.

M2Form

Approximation error: field variables

Reference HMS vs. clustering-enabled HMS

With respect to the field variable γ , the relative error at integration point *i*:

$$e_i^{\gamma} = rac{|\gamma_i - \gamma_i'|}{\gamma_i} imes 100\%$$

Error for the whole model:

$$\bar{e^{\gamma}} = rac{1}{n} \sum_{i=1}^{n} e_i^{\gamma}$$

Note: γ is the control variable used in clustering.

J. Gawad et al.

KU LEUVEN

Accuracy of static and dynamic clustering schemes

Material property: plastic potential

M2Form

J. Gawad et al.

Accelerating multi-scale microstructure simulations

Accuracy of static and dynamic clustering schemes

Plastic strain

dynamic clustering scheme

J. Gawad et al.

Performance gain: static vs. dynamic clustering scheme

Overall gain in total computation time (speedup):

$$g_t = \frac{t_r}{t_c}$$

Reduction in the number of calls to the fine-scale model ("speedup in updates"):

$$g_u = \frac{n_r}{n_c}$$

M2Form

Accelerating multi-scale microstructure simulations

Microstructural similarity within clusters

Example: dynamic clustering scheme, torque bar

Recall the assumption we made:

similar deformation in adjacent points \Rightarrow similar microstructures \Rightarrow similar properties

Do actually similar microstructures develop if neighboring points are subjected to similar deformation?

 \rightarrow Yes, see deformation textures at several points of the reference HMS that would belong to the same cluster:

M2Form

Accelerating multi-scale microstructure simulations

Summary and take-aways

- 1. The HMS adaptively approximates mechanical responses of the CP model by much simpler analytical models.
- 2. Concurrent evolution of texture and plastic anisotropy can be then handled in component-scale FE models.
- 3. Further acceleration of the HMS is attained if spatial quasi-homogeneities are exploited.
- 4. Static and dynamic clustering schemes restrict tracking the evolution of the fine-scale variables to a number of representative material points.
- 5. Large performance gains (e.g. a speedup of 25) are attained at the expense of minor modelling error.
- 6. Dynamic clustering scheme in the HMS allows following the field of interest.

Advanced solutions for component-scale crystal plasticity simulations by KU Leuven Knowledge Platform M2Form:

- HMS : Hierarchical Multi-Scale framework
- VEF : Virtual Experimentation Framework

Web: https://set.kuleuven.be/m2form/projects e-mail: jerzy.gawad@cs.kuleuven.be

J. Gawad et al.

Accelerating multi-scale microstructure simulations