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Outline of the HMS modelling framework
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Outline of the HMS modelling framework
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Computational advantage of the HMS

How much can we save in terms of the simulation time?

For example:
Crystal Plasticity fully embedded in an explicit time integration FE:

» 1 call/update to the fine-scale CP model per increment of the
coarse-scale FE model

teprem =~ 100.000 updates x 20.000 integration points X tcp + tee

HMS: Crystal Plasticity hierarchically coupled with FEM:
tyms ~ 30 updates x 20.000 integration points X tcp + tee
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Contributions to the computational cost of multi-scale
CP-FEM

evolution

of material every time : g
state & increment | = EANEUY

properties

The HMS addresses the issue:
> in the temporal dimension: reconstruction of the plastic potential
function is adaptively conducted only at the moments when a
given deformation-based criterion is satisfied.

> in the spatial dimension: another acceleration is possible!

J. Gawad et al. Accelerating multi-scale microstructure simulations . .. ICME 2016, Barcelona



KU LEUVEN 5

Acceleration of the multi-scale CP models by exploiting
spatial quasi-homogeneities
Fundamental assumptions:

» Similar microstructural state variables subjected to a similar
deformation history would evolve along nearly identical
trajectories.

» Derived macroscopic plastic properties would be similar as well.

Additional assumption:

» The accumulated plastic strain determines the evolution of the

material properties.
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Exploiting spatial quasi-homogeneities

control field variables: total plastic slip, accumulated plastic strain,
equivalent plastic strain . ..
Integration points grouped together (clustered):

material state: microstructure (texture, substructure, ... ), plastic
potential function, . ..
material properties: plastic potential function, hardening, . ..
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Overview of the spatial clustering method in HMS
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Overview of the spatial clustering method in HMS

el

V updates
(representative point)

X does not update
(propagated by the
representative point)

But it has to be decided when and how the clusters should be formed.
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Clustering schemes and clustering criteria

Clustering scheme decides when the clusters are formed.
Several schemes can be considered, including:

1. static: the clusters are constructed once and later used
throughout the simulation.

2. dynamic: the cluster are adaptively rebuilt as the HMS
simulation advances.

Clustering criterion decides how the integration points are grouped
into the clusters.

> primary criterion: spatial proximity of the integration points
» secondary criteria:

1. magnitude of total plastic slip, or

2. plastic strain tensor,

3. sum of the absolute values of plastic strain increment tensors,
4. ...
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Static spatial clustering

The algorithm in a nutshell:
» Parameter: number of clusters k.
» Initialization: all integration points belong to a single cluster

» Given the control field variable and the Euclidean distance matrix,
construct k clusters and use these clusters throughout the
simulation.

The inputs may be taken from:
» a plain FE simulation (non-HMS) of the process (off-line), or

» the HMS simulation itself, for instance when the first update of
properties is calculated (on-line)

» a reference HMS simulation (off-line, very impractical)
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Static spatial clustering in HMS: performance gain vs
accuracy

Example: tensile test on a complex geometry specimen
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Static spatial clustering in HMS

Example: torque bar, 9 clusters

» Example: a bar subjected to torsion followed by tension.

» The two deformation steps introduce a non-monotonic strain
path.
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Static spatial clustering in HMS

Example: torque bar, 27 clusters
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Static spatial clustering in HMS

Example: torque bar, 27 clusters
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Static spatial clustering in HMS

Example: torque bar, 27 clusters

» Static clustering does not follow the evolution of the control field
variable.

» Not much can be gained by simply increasing the number of
clusters — an adaptive approach is needed.
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Dynamic adaptive clustering

» Parameter: threshold value tgp);.

» Initialization: all points belong to a single cluster
» At each updating event, consider splitting each existing cluster C:

1. Apaxv = maCx(v,-) - mig(v,-), where v is the control field variable.
i€ 1€

2. If Apaxv > topjir, re-cluster C into new clusters Cy, ..., C, that
inherit the extended material states from the representative of C
to the new representatives of Cy,..., C,.

» A high threshold value permits the clusters to persist longer;
fewer clusters are generated overall, resulting in a high speedup
but lower accuracy.
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Dynamic clustering: the “split” operation

» Local operation on a limited number of integration points

» think of divisive hierarchical clustering: O(N?), or DBSCAN or
OPTICS: O(nlogn))

» Direct back-traceability of the fine-scale model state variables
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Dynamic adaptive clustering: results
Example: torque bar, high threshold for splitting
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Dynamic adaptive clustering: results

Example: torque bar, low threshold for splitting
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Approximation error: material properties
Reference HMS vs. clustering-enabled HMS

In terms of plastic potential function %, the
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Approximation error: field variables
Reference HMS vs. clustering-enabled HMS

With respect to the field variable v, the Al =
relative error at integration point i S
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Note: v is the control variable used in clustering.

J. Gawad et al. Accelerating multi-scale microstructure simulations . .. ICME 2016, Barcelona



Accuracy of static and dynamic clustering schemes
Material property: plastic potential
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Accuracy of static and dynamic clustering schemes

Plastic strain
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Performance gain: static vs. dynamic clustering scheme
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Microstructural similarity within clusters

Example: dynamic clustering scheme, torque bar
Recall the assumption we made:
similar deformation in adjacent points = similar microstructures = similar

properties
\ r v - M
e 4 G s
@\» . :
i o i
: et A,y ) [
cluster representative point (RP) corresponding point in the reference HMS

Do actually similar microstructures develop if neighboring points are subjected to
similar deformation?

— VYes, see deformation textures at several points of the reference HMS that would
belong to the same cluster:
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Summary and take-aways

. The HMS adaptively approximates mechanical responses of the

CP model by much simpler analytical models.

Concurrent evolution of texture and plastic anisotropy can be
then handled in component-scale FE models.

Further acceleration of the HMS is attained if spatial
quasi-homogeneities are exploited.

Static and dynamic clustering schemes restrict tracking the
evolution of the fine-scale variables to a number of representative
material points.

Large performance gains (e.g. a speedup of 25) are attained at
the expense of minor modelling error.

Dynamic clustering scheme in the HMS allows following the field
of interest.
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Advanced solutions for component-scale crystal plasticity
simulations by KU Leuven Knowledge Platform M2Form:

HMS : Hierarchical Multi-Scale framework
VEF : Virtual Experimentation Framework

Web: https://set.kuleuven.be/m2form/projects
e-mail: jerzy.gawad@cs.kuleuven.be
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