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Abstract. In a recent work, a model of an intra-cellular transmission system of genetic 

information, similar to a digital communication system, has been proposed and narrow sense 

BCH error correcting codes over Z4 and F4 have been used for identifying a mathematical 

structure in DNA and mRNA sequences. In this work, for mRNA sequences, we use the 

proposed transmission system and extend its capability by considering not only narrow sense 

as well as non-narrow sense BCH codes. As a consequence, we are able to identify a 

mathematical structure for an increased number of mRNA sequences. For proteins, we 

establish an analogy between properties of error-correcting codes and proteins and propose a 

methodology for establishing a mathematical structure and for representing proteins by use of 

BCH codes over Z20 and F4xF5. The mapping from amino acids to Z20 is defined by using 

Dayhoff's matrix and the isometry between Z4 and F4. Consequently, some mRNA sequences 

and proteins from NCBI and PDB data banks, respectively, are identified. 
 

 

1 INTRODUCTION 

One of the great challenges of the scientific community on genomics and proteomics is to 

provide convincing arguments and proper hypothesis on the existence of a mathematical 

structure related to DNA, mRNA and proteins such that they may be formulated into an 

information and coding theory framework. This embedding can help to solve the question 

“How can information required for the proper functioning of a cell, an organism, or a specie 

be transmitted in a “hostile” environment?” [1] and contribute to the general understanding of 

biological communication mechanisms.  

In [2], a model of an intra-cellular transmission system of genetic information, similar to a 

model of digital communication system, has been proposed and narrow sense BCH error-

correcting codes over Z4 and F4 have been used for identifying a mathematical structure in 

DNA and mRNA sequences [3-5]. In this work, for mRNA sequences, we use the proposed 

transmission system and propose a procedure for considering all possible BCH codes. 

Therefore, we are able to identify a mathematical structure for an increased number of mRNA 

sequences.  

In the case of proteins, there is a clear relation between properties of error-correcting codes 

and biologically functional proteins, as described next:  

- Sequences over an alphabet of cardinality 20 with amino acid chains. 
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- Code's codewords with biologically functional proteins. 

- An error correcting code C with a set of functional proteins. 

- Correctable sequences for codeword c with proteins similar to a specific functional 

protein. 

These links and the capability of chaperone molecules to detect errors [6, 7] justify the use 

of ECCs for modelling proteins and amino acid sequences. In this work, we aim to propose a 

methodology for representing or identifying proteins by use of BCH codes over Z20 and F4xZ5 

(both with 20 elements). BCH codes are considered because its structure is well-known and 

they are relatively easy to design. We call attention to the use of the word error-correcting 

codes as an error control mechanism instead of stating that the biological information system 

explicitly corrects mutations. 

In Section 2, we introduce the basic concepts in coding theory and further information can 

be found in [8]. In Section 3, we detail the methodology and procedures for identifying 

mRNA sequences and proteins by BCH codes. In section 4, we show and discuss the results 

when applying the methodology to some mRNA sequences and proteins. Finally, in Section 4 

we draw the conclusions.   

2 BASIC CODING THEORY CONCEPTS 

Error Correcting Codes (ECCs) are always used for reliably transmitting and storing 

information, even if the communication channel is noisy; hence, the transmitted sequences 

may differ from the received ones. An error-correcting code (ECC) C is a subset of A
n
, where 

A is the alphabet and any sequence of length n that belongs to the code is a codeword. A code 

C and its error detection and correction capabilities are specified by three parameters: the 

codeword length (n), the number of codewords in C (|C|), and the minimum distance (dc). In 

this work, we consider the Hamming distance as metric for two sequences u=(u1,...,un) and 

v=(v1,...,vn) in A
n
; and it counts the number of positions in which u and v differ: 

d(u,v)=|{i  :  ui ≠ vi}|  (1) 

The Hamming minimum distance of the code (dc) specifies the smallest number of positions 

by which any two different codewords differ and, therefore, the code can detect (dc –1) at 

most dc errors and correct t=⌊(dc-1)/2⌋ errors (⌊·⌋ represents the floor operator). 

In the next subsections we introduce the alphabets we use throughout this work and give a 

brief explanation on BCH codes over these alphabets. 

2.1 Alphabets 

The encoder in the transmission system receives the information message to be transmitted 

and, uniquely, maps it into one of the codewords. The receiver receives a sequence that can be 

different from the transmitted codeword and corrects it to obtain the transmitted codeword. In 

order to detect or correct errors, the ECC and the alphabet must have a well defined 

mathematical structure. In this work, we use four types of alphabets for designing ECCs, 

namely: Z4 , Z20 , F4 and F4xZ5; which are described as follows: 

- Integers module m ( Zm={0,1,...,m-1} ): It is a ring [8] with two binary operations: 

addition and multiplication modulo m. Let a and b be two elements in Zm, then the 

operation addition modulo m, denoted by (a+m b), is obtained by reducing modulo m 
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the usual integer addition of a and b ((a+b)m ); and the operation multiplication 

modulo m, denoted by (a•m b), is obtained by reducing modulo m the usual integer 

multiplication of a and b ((a•b)m ).  

Example. In Z4 :  (2+4 2)=(4)4=0, (3+4 3)=(6)4=2, (2•42)=(4)4=0 and (3•43)=(9)4=1 

(We use the + symbol to represent both +4 and +20 , the reader must identify the 

operation by the context). 

The fundamental theorem of arithmetic and the Chinese Remainder Theorem [8] 

establish that the ring Zm is isomorphic to a product of local rings:  

 (2) 

  

where the pi's are prime numbers and the ri's are integer numbers greater than or 

equal to 0. Therefore, Z20 = Z4xZ5 and the ring isomorphism is shown in Table 1. 

Example. The isomorphism can be used to compute operations in Z20 :  

(7+15)=((3,2)+(3,0))=(2,2)=2  and  (8•12)=((0,3)•(0,2))=(0,1)=16.  
 

Table 1: Ring isomorphism between  Z20 and Z4xZ5 

Z20 0 1 2 3 4 5 6 7 8 9 

Z4xZ5 (0,0) (1,1) (2,2) (3,3) (0,4) (1,0) (2,1) (3,2) (0,3) (1,4) 

              

Z20 10 11 12 13 14 15 16 17 18 19 

Z4xZ5 (2,0) (3,1) (0,2) (1,3) (2,4) (3,0) (0,1) (1,2) (2,3) (3,4) 

 

- Galois field of 4 elements ( F4={0, 1, a, 1+a=b} ): It is a field [8] and its two binary 

operations are defined according to Table 2.  

Example. (1+a)=b , (a+a)=0 , (a•b)=1 and (a•a)=b 
 

Table 2: Addition and multiplication operations in F4  

a+b 0 1 a b  a•b 0 1 a b 

0 0 1 a b  0 0 0 0 0 

1 1 0 b a  1 0 1 a b 

a a b 0 1  a 0 a b 1 

b b a 1 0  b 0 b 1 a 

 

2.2 BCH codes 

BCH codes belong to the class of cyclic linear error correcting codes [8]. A code C is said 

to be cyclic if for any codeword v=(v1,...,vn) in C, a cyclic shift of v (represented by 

v
(1)

=(vn,v1,...,vn-1)) also belongs to C. From now on we make the following identification from 

sequences in A
n
 to polynomials in the residue class ring R=A[x]/(xn

-1): 

(u0 ,u1 ,...,un-1) ∈ A
n
  ↔  u0+u1 x+...+un-1 x

n-1
 ∈  A[x]/(x

n
-1)=R (3) 

Since any cyclic code is an ideal in R [8], it follows that BCH codes are also ideals in R 
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and their construction is based on the unique factorization of the polynomial x
n
-1 : 

x
n
-1 = f1 (x)...fs (x) = (x-1)(x-α)(x-α

2
)...(x-α

n-1
) (4) 

where the fi's are called minimal polynomials over A and α is a cyclic element of order n in 

the extension field or in the extension ring of A. α  is said to be of order n when α
n
=1 and α

i
≠1 

for 0<i<n. Let us define the generated set by α as Gn={1,α,α
2
,...,α

n-1
}. 

BCH codes are principal ideals generated by g(x), see equation (5), where g(x) is a 

polynomial over A constructed by the non repeated multiplication of some fi's, and it is called 

the generator polynomial of the code.  

(g(x))={g(x)z(x) : z(x) ∈ A[x]/(x
n
-1)} (5) 

When A is F4 or a field Zp=Fp (where p is a prime number), and n=p
r
-1 for any positive 

integer r, the ring R is a principal ideal domain (all ideals in R are principal), the factorization 

shown in equation (4) is unique and α is a primitive element of order n of the ring 

Γ=A[x]/(p(x)), where p(x) is a primitive polynomial with degree r and α satisfies p(α)=0. 

Primitive polynomials are tabulated as shown in [8].  

When A is Z4 (a local ring) and n=2
r
-1, for any integer r, the factorization shown in 

equation (4) is unique and α does exist [9] and it is computed according to the following 

procedure: 1) compute the ring extension Γ=Z4[x]/(p(x)), where p(x) is a primitive polynomial 

with degree r over Z2 and let γ represent the element in Γ such that p(γ)=0; and 2) over Γ, γ is 

an element of order n·l, where l is an integer greater than or equal to 1; so consider α as γ
l
 

(α=γ
l
) and note that the order of α in Γ is n.   

Using the above notation, the primitive BCH code over A of length n and generator 

polynomial g(x), such that α
e
, α

e+1
,..., α

e+δ-2
 are roots of g(x) (i.e. g(α

e
)=0,...,g(α

e+δ-2
)=0 over 

Γ), has a Hamming minimum distance (dc) greater than or equal to δ. 

The non-primitive BCH codes were introduced for the construction of such codes with 

lengths different from p
r
-1 (or 2

r
-1). Consider m satisfying n=a·m=p

r
-1 (or n=a·m=2

r
-1), i.e. 

m is a divisor of n. Then, the polynomial x
m
-1 can be factored by substituting α

a
 by β (β=α

a
) 

in equation (4) and the generator polynomial is the non repeated multiplication of some fi's. 

Note that all fi's from equation (6) are in equation (4), however the converse is not true. 

x
m
-1 = f1 (x)...fk (x) = (x-1)(x-β)(x-β

2
)...(x-β

m-1
) (6) 

Using the above notation, the non-primitive BCH code over A of length m and generator 

polynomial g(x), such that β
e
, β

e+1
,..., β

e+δ-2
 are roots of g(x) (i.e. g(β

e
)=0,...,g(β

e+δ-2
)=0 over 

Γ), has Hamming minimum distance (dc) greater than or equal to δ. 

One subclass of the primitive and non-primitive BCH codes is formed by the narrow-sense 

BCH codes. A narrow-sense primitive (or non-primitive) BCH code over A of length n (or m) 

and design distance δ is a BCH code such that e=1; i.e. the generator polynomial g(x) has α, 

α
2
,..., α

δ-1
 (or β, β

2
,..., β

δ-1
) as its roots.  

Example. Construction of a narrow-sense primitive BCH code over Z4 of length 7 and 

Hamming minimum distance dc≥3. 

Since 7=n=2
3
-1, it follows that a primitive polynomial of degree 3 over Z2 is needed: 

p(x)=x
3
+x+1. 

Using the fact that p(γ)=γ
3
+γ+1=0, we can compute the group generated by γ (see Table 

3), where γ
3
=3γ+3. Note that the order of γ is 14, then l must be equal to 2 to obtain α as an 

element of order 7 (α=γ
2
). Considering the generator polynomial as: g(x)=(x-α)(x-α2)(x-
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α
4)=x

3
+2x

2
+x+1, we get e=1 and δ=3. 

 

Table 3: Multiplicative group generated by γ ( γ
3
=3γ+3 ) 

1 1 1  γ
5 

1+γ+3γ
2 

  γ
10 

3+3γ+2γ
2 

α
5 

γ γ   γ
6 

1+2γ+γ
2 

α
3 

 γ
11 

2+γ+3γ
2 

 

γ
2 

γ
2 

α  γ
7 

3+2γ
2 

  γ
12 

1+3γ+γ
2 

α
6 

γ
3 

3+3γ   γ
8 

2+γ α
4 

 γ
13 

3+3γ
2 

 

γ
4 

γ·γ
3
=3γ+3γ

2 
α

2 
 γ

9 
2γ+γ

2 
  γ

14 
1 α

7 

 

3 METHODOLOGY 

3.1 Identifying mRNA sequences by use of BCH codes 

The mRNA sequences were obtained from the NCBI database and only sequences that 

satisfy the primitive and non-primitive length constraints were considered. In the case the 

alphabet is Z4, the allowable lengths (n) are divisors of 2
r
-1; and in the case alphabet is F4, the 

allowable lengths are divisors of 4
r
-1. Only alphabets with four elements were considered, 

since there are only four nucleotides (N={A,C,G,U}): adenine, cytosine, guanine and thymine.  

Since the alphabet of the mRNA sequences must be converted into the alphabet of the 

BCH codes, and vice-versa, an association between the elements of the set N={A,C,G,U} and 

the elements of the set Z4 (or F4) must be established. We call this association: a labeling. 

There are twenty four possible labeling, corresponding to the 24 permutations of N. The 

labelings are shown in Table 4 and Table 5 for alphabets Z4 and F4, respectively.  

When considering Z4, according to [2, 4, 5], three subgroups of eight labelings were 

identified (labeling A, B and C) as shown in Table 4, hence equal results were obtained 

independent of the labeling used in that subgroup. When considering F4, according to [3], all 

the 24 possible labelings led to the same result, therefore, it is enough to consider one 

arbitrary labeling for performing the procedure. In this work we consider all labelings, since 

those conclusions were valid only for narrow-sense BCH codes.  
 

Table 4: Labelings and permutation subgroups from N to Z4  

Labeling A Labeling B Labeling C 

A C G T 

0 1 3 2 
 

A C G T 

0 3 1 2 
 

A C G T 

0 1 2 3 
 

A C G T 

0 3 2 1 
 

A C G T 

0 2 1 3 
 

A C G T 

0 2 3 1 
 

A C G T 

1 2 0 3 
 

A C G T 

1 0 2 3 
 

A C G T 

1 2 3 0 
 

A C G T 

1 0 3 2 
 

A C G T 

1 3 2 0 
 

A C G T 

1 3 0 2 
 

A C G T 

2 3 1 0 
 

A C G T 

2 1 3 0 
 

A C G T 

2 3 0 1 
 

A C G T 

2 1 0 3 
 

A C G T 

2 0 3 1 
 

A C G T 

2 0 1 3 
 

A C G T 

3 0 2 1 
 

A C G T 

3 2 0 1 
 

A C G T 

3 0 1 2 
 

A C G T 

3 2 1 0 
 

A C G T 

3 1 0 2 
 

A C G T 

3 1 2 0 
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Table 5: Labelings and permutation from N to F4 

Labelings 

A C G T 

0 1 a b 

1 

A C G T 

0 a b 1 

2 

A C G T 

0 b 1 a 

3 

A C G T 

0 1 b a 

13 

A C G T 

0 a 1 b 

14 

A C G T 

0 b a 1 

15 

A C G T 

1 0 b a 

4 

A C G T 

a 0 1 b 

5 

A C G T 

b 0 a 1 

6 

A C G T 

1 0 a b 

16 

A C G T 

a 0 b 1 

17 

A C G T 

b 0 1 a 

18 

A C G T 

a b 0 1 

7 

A C G T 

b 1 0 a 

8 

A C G T 

1 a 0 b 

9 

A C G T 

a b 1 0 

19 

A C G T 

b 1 a 0 

20 

A C G T 

1 a b 0 

21 

A C G T 

b a 1 0 

10 

A C G T 

1 b a 0 

11 

A C G T 

a 1 b 0 

12 

A C G T 

b a 0 1 

22 

A C G T 

1 b 0 a 

23 

A C G T 

a 1 0 b 

24 

 

In order to identify mRNA sequences as codewords of primitive and/or non-primitive BCH 

codes, we apply the procedure described next:  

- Step 1: Using the selected labeling, map the nucleotide sequence (N
n
) into a vector 

over Z4 (or F4). 

- Step 2: Construct the ring (or field) extension Γ=Z4[x]/(pi(x)) (Γ=F4[x]/(pi(x))) by using a 

primitive polynomial pi(x) over Z2 (or F4). 

- Step 3: Compute the minimal polynomials Z4 (or F4) that factorize x
n
-1 

- Step 4: Select the minimal polynomials that divide the translated sequence. 

- Step 5: Select the elements in Gn that are roots of the minimal polynomials obtained 

from Step 4. 

- Step 6: Verify the BCH bound, i.e. find the values e and δ and compute g(x) as:  

g(x)=lcm(fe,...,fe+δ-2) , where lcm(·) is the least common multiple operation and 

fe,...,fe+δ-2 are the minimal polynomials from Step 4, such that fi(α
i
)=0. 

- Step 7: Return the mathematical structure of BCH codes (p(x) and g(x)), that have a 

design distance (δ) greater than or equal to 3. 

- Step 8: Go to Step 2 and choose another primitive polynomial pi(x) over Z2 (or F4).  

3.2 Identifying proteins sequences by use of BCH codes 

Since the proteins are sequences of amino acids and that there are 20 different amino acids, 

it follows that we must construct ECCs over alphabets with 20 elements. There are few results 

related to this problem, probably due to the few applications in engineering and information 

theory using alphabets with 20 elements. In [10], a methodology for designing codes over Zm 

(integers module m) has been proposed. In the case m = 20 (Z20 is the integers modulo 20), 

the methodology uses the Chinese Remainder Theorem shown in equation (2) and consists in 

joining component-wise (by the Cartesian product) all codewords of two ECCs of equal 

length n over Z4 and Z5. The properties of the code over Z20 (C20) are deduced from the 
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parameters of the codes over Z4 and Z5 (C4 and C5). C20 is cyclic if C4 and C5 are both cyclic 

codes, the length of C20 is n, the number of codewords is |C4|·|C5|=|C20| and, if the minimum 

distance of the codes C4 and C5 are dc4 and dc5, respectively, then the minimum distance of 

C20  is given by: 

dc20 = min{dc4 , dc5} (7) 

The analysed proteins were obtained from the RCSB Protein Data Bank (PDB) and only 

proteins that satisfy the primitive and non-primitive length constraints for both Z4 and Z5 were 

considered. Therefore, n must be a divisor of both 2
 r1

-1 and 5
 r2

-1    

In the case of mRNA, there are four nucleotides and 4! = 24 permutations or labelings. In 

the case of proteins, there are 20 amino acids and 20! = 24,33x10
17

 permutations or labelings 

from the set of amino acids AA = {K, Q, N, D, E, P, G, A, S, T, C, V, I, M, L, F, Y, W, H, R} to 

the set Z20. Therefore, it is unfeasible to test every possible labeling for proteins. In [11], 

ideally the Dayhoff's mutation odds matrix is constrained to a circle and it expresses the idea 

that the amino acids which are close together exchange frequently. This representation 

reminds the traditional mathematical representation of the ring Z20, as shown in Figure 1. 

Therefore, as labelings for proteins, we consider the labeling shown in Figure 1 and all its 

other 39 dihedral symmetries (rotations and reflections). In[12], the Dayhoff revised matrix is 

considered and the results coincides with [11] except for the exchange of amino acids R and 

H as indicated by an arrow in Figure 1. We also consider the labeling with the exchange of R 

and H and all its other 39 dihedral symmetries. In the total we consider 80 different labelings. 

Figure 1: Left. Representation of Dayhoff's matrix according to [XXX]. 

Right - Graphical representation of the ring Z20. 

Another alphabet with 20 elements is F4xZ5. Similar to the code design procedure used for 

the alphabet Z20, two ECCs (C4 and C5) with equal length n over F4 and Z5, respectively, are 

used to construct an ECC (C45) with length n over F4xZ5. C45 is obtained by joining 

component-wise (Cartesian product) all codewords of C4 and C5. Again, the properties of C45 

are deduced from the parameters of the codes C4 and C5. C45 is cyclic if C4 and C5 are both 

cyclic codes, the length of C45 is n, the number of codewords is |C4|·|C5|=|C45| and if the 

minimum distance of the codes C4 and C5 are dc4 and dc5, respectively, then the minimum 

distance of C45 is given by dc45 = min{dc4 , dc5}.    

For the alphabet F4xZ5, 80 labelings were considered and they were obtained by using the 

isometry (an isometry is a map that preserve distance between elements) between Z4 and F4, 

see equation (8) [8]. 
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Isometry Z4 → F4  :  {0→(0,0), 1→(1,0), 2→(1,1), 3→(0,1)} (8) 

Knowing the labelings from AA to Z20 and that Z20=Z4xZ5; we apply the isometry of 

equation (8) to the component Z4 of the ring Z20 to obtain the labeling from AA to F4xZ5. For 

example, considering the labeling expressed in Figure 1, the amino acid H is mapped to 

element 18 in Z20 or (2,3) in Z4 xZ5 and to element ((1,1),3) in F4xZ5. Since we have used an 

isometry between Z4 and F4, then the Dayhoff matrix's idea (amino acids which are close 

together exchange frequently) is passed from alphabet Z20 to alphabet F4xZ5. 

In order to identify proteins as codewords of primitive and/or non-primitive BCH codes, 

we apply the following procedure:  

- Step 1: Using the selected labeling, map the protein (AA)
n
 into a vector over Z20 (or 

F4xZ5 ). 

- Step 2: Using the Chinese Remainder Theorem do the map from Z20 to Z4xZ5, split 

the Z20 sequence into two sequences over Z4 and Z5 (or split the F4xZ5 sequence into 

two sequences over F4 and Z5). 

- Step 3: Apply twice the procedure shown in Section 3.2. One for identifying the Z4 

sequence as a codeword of a BCH code and the other for identifying the Z5 sequence 

as a codeword of a BCH code (or one for identifying the F4 sequence as a codeword 

of a BCH code and the other one for identifying the Z5 sequence as a codeword of a 

BCH code). 

- Step 4: Return the mathematical structure of both BCH codes C4 and C5, if their 

design distances (δ4 and δ5) are both greater than or equal to 3.  
 

Table 6:  mRNA sequences identified by non narrow-sense BCH codes over F4  

Abbreviations: Organism (Org), Eukaryotic cell (EC), Brassica napus (Bn),  

Arabidopsis thaliana (At), Nicotiana tabacum (Nt)   

mRNA     

GI number 

Org Labeling Primitive polynomial SNP Length 

(n) Cell δ Generator Polynomial Position 

899225 
Bn 1 – 12  b+x+x

2
+x

3 
UUC (F) → GUC (V) 

63 
EC 4 b+x+ax

2
+x

4
+ax

5
+x

7 
1° codon 

899225 
Bn 13 – 24  a+x+x

2
+x

3 
UUC (F) → GUC (V) 

63 
EC 4 a+x+bx

2
+x

4
+bx

5
+x

7 
1° codon 

186509758 
At 1 – 12  a+x+x

2
+x

3 
AGC (S) → AGU (S) 

63 
EC 6 a+bx+ax

2
+x

3
+x

5
+bx

6
+ax

8
+x

10 
6° codon 

186509758 
At 13 – 24  b+x+x

2
+x

3 
AGC (S) → AGU (S) 

63 
EC 6 b+ax+bx

2
+x

3
+x

5
+ax

6
+bx

8
+x

10 
6° codon 

186509758 
At 10 – 12  a+x+x

2
+x

3 
AGC (S) → AGU (S) 

63 
EC 4 1+x+x

2
+ax

3
+ax

4
+x

5
+x

6
+x

7 
13° codon 

186509758 
At B3 b+x+x

2
+x

3 
UCA (S) → UCC (S) 

63 
EC 19 – 21  1+x+x

2
+bx

3
+bx

4
+x

5
+x

6
+x

7 
13° codon 

632733 
Nt 1 – 3  a+x+x

2
+x

3 
GGA (G) → GCA (A) 

63 
EC 4 1+bx+bx

2
+bx

5
+bx

6
+x

7 
1° codon 

632733 
Nt 13 – 15  b+x+x

2
+x

3 
GGA (G) → GCA (A) 

63 
EC 4 1+ax+ax

2
+ax

5
+ax

6
+x

7 
1° codon 
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4 RESULTS AND DISCUSSION 

In order to analyze the mismatching between an mRNA sequence and a codeword, we 

consider three other possibilities for nucleotides in each position in the mRNA sequence; i.e. 

we search for codewords that are one Hamming distance unit of a given mRNA sequence. 

This procedure makes sense, since the codes we are constructing can correct one error in any 

position.  
 

Table 7: Protein identified by BCH codes over Z20 and F4xZ5 

Abbreviations: IAAl-E3 heterodimer (IAAl-E3), NS2 (2-32) peptide on  

Hepatitis GB virus B (NS2 peptide), proto-oncogene tyrosine-protein  

kinase LCK (PROTO)   

PDB   

number 

Molecule 
Labeling Primitive polynomial (Z5) 

Mutation 
δ5  Generator Polynomial (Z5) 

Length 
Z20 or F4xZ5? Primitive polynomial (Z4 or F4) 

Position 
δ4 Generator Polynomial (Z4 or F4) 

1U0I 

IAAl-E3 

Tay / Swa 1+2x
2
+2x

3
+2x

4
+x

6 

Reproduced 

(No mutation) 6 
4+2x+4x

2
+4x

3
+2x

4
+4x

5
+4x

6
+x

7
+x

8
+3x

9
+x

10

+x
11

+3x
12

+x
13 

21 

Z20 1+x+3x
2
+3x

4
+2x

5
+x

6 

Reproduced 

(No mutation) 6 
3+2x+3x

2
+3x

3
+2x

4
+3x

5
+3x

6
+x

7
+x

8
+2x

9
+x

10

+x
11

+2x
12

+x
13 

1U0I 

IAAl-E3 

Tay / Swa 1+2x
2
+2x

3
+2x

4
+x

6 

Reproduced 

(No mutation) 6 
4+2x+4x

2
+4x

3
+2x

4
+4x

5
+4x

6
+x

7
+x

8
+3x

9
+x

10

+x
11

+3x
12

+x
13 

21 
F4xZ5 1+ax+x

3 
Reproduced 

(No mutation) 6 1+x
2
+x

3
+x

5
+x

6
+x

7
+x

8
+x

10
+x

11
+x

13 

2LZP 

NS2 

peptide 

Tay 4+4x+4x
2
+x

3 

A → R 
3 1+3x+x

4 

31 
Z20 3+3x+x

2
+3x

3
+2x

4
+x

5 
15° amino 

acid 4 1+x+x
2
+2x

3
+2x

4
+x

6 

2LZP 

NS2 

peptide 

Swa 4+4x+2x
2
+x

3 

A → G 
3 1+2x

2
+x

3
+x

4 

31 
Z20 3+3x+x

2
+3x

3
+2x

4
+x

5 
15° amino 

acid 4 1+x+x
2
+2x

3
+2x

4
+x

6 

1H92 

PROTO 
Tay 1+3x+3x

2
+3x

3
+3x

4
+3x

5
+x

6 

L → I 
3 4+3x+2x

6
+x

7 

63 
F4xZ5 a+bx+x

2
+x

3 
23° amino 

acid 4 a+ax
2
+ax

3
+x

4 

4A46 

SSR2857 

protein 

Swa 1+2x+3x
2
+3x

4
+2x

5
+x

6 

A → Q 
3 4+4x+4x

2
+3x

3
+2x

4
+x

5
+x

6
+x

7 

63 
Z20 a+bx+x

2
+x

3 
15° amino 

acid 4 1+x+bx
2
+x4 
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When studying mRNA sequences over Z4, we did not identify more mRNA sequences than 

those identified by the algorithm introduced in [2, 4, 5]. However, the fact that we did not 

identify mRNA sequences by use of non-narrow sense BCH codes does not guarantee that 

they do not exist. 

In the case of the alphabet F4, we were able to identify more mRNA sequences than those 

identified by the algorithm introduced in [3]. Table 6 illustrates some mRNA sequences 

obtained from the NCBI database. These sequences were analyzed by the proposed procedure 

and were identified as codewords of non narrow-sense BCH codes over F4. These results 

demonstrate that the proposed procedure generalizes the algorithm introduced in [3]. Note 

that every analyzed mRNA sequence differs by one nucleotide in one position when 

compared to the closest codeword in the obtained BCH code. Biologically, this difference is 

considered as an SNP (single nucleotide polymorphism). 

Table 7 illustrates some proteins obtained from the RCSB Protein Data Bank. These 

proteins were analyzed by the proposed procedure and were identified by BCH codes over Z20 

and F4xZ5. Note that some of the analyzed proteins differ by one amino acid in only one 

position when compared to the closest codeword of the BCH code. This fact makes sense, 

since the designed codes are able to correct one error in any position. In Table 7, the two 

labelings, obtained from [11] and [12] and shown in Figure 1, are denoted by Tay and Swa, 

respectively. 

12 CONCLUSIONS 

A procedure for identifying mRNA sequences by use of BCH codes over Z4 and F4 has 

been proposed. This procedure generalizes the algorithm introduced in [2-5] and opens the 

possibility to identify a mathematical structure for an increased number of mRNA sequences. 

A relation between coding theory concepts and protein properties has been introduced: 1) 

sequences over an alphabet of cardinality 20 with amino acid chains, 2) identified codewords 

with biologically functional proteins, 3) a code with a set of functional proteins and 4) 

correctable sequences for codeword c with proteins similar to a specific functional protein. 

The methodology for identifying proteins by use of BCH code over Z20 and F4xZ5 was 

realized by examples. 
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