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Abstract. Bacterial biofilm plays a vital role for many technical and medical applications. 
Predicting biofilm growth with mathematical models requires solving the balance equations 
for species and nutrients as well as for biofilm numerically. We consider the model in the 
continuum mechanics framework, which means the growth of different components of 
biofilm is governed by a time dependent advection-reaction (AR) equation. To find fast and 
robust solution schemes for the advection-diffusion-reaction (ADR) equation is challenging, 
especially under the situation of convection-dominated transport and highly nonlinear reaction 
terms involved. In this paper, the recently developed time discontinuous Galerkin (TDG) 
method combined with a stabilization technique called finite calculus (FIC) method has been 
successfully applied to solve a multi-dimensional multi-species biofilm growth model. The 
biofilm interface in the model is described as a convective movement following a potential 
flow coupled to the reaction inside of the biofilm. Nutrients (oxygen in this paper) diffuse 
through a boundary layer on top of the biofilm interface. A rolling ball method is applied to 
obtain a boundary layer of constant height. Different patterns of biofilm during the growth 
obtained from the numerical simulations are studied, and the influence of the parameters on 
the patterns and the performance of the model are also discussed in this paper. 

1 INTRODUCTION 
Bacterial biofilms are notorious, especially in clinical applications. They are responsible 

for most of human infections, and meanwhile the disinfection rate by antibiotic of a biofilm 
normally is much lower than planktonic bacteria. Even though the definition of biofilm is 
very diverse, some common components of bacterial biofilms are widely observed form 
experimental studies, such as the active bacteria, inert or dead bacteria and the extracellular 
polymeric substance (EPS) produced by the active bacteria. The combination of those 
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boundary layer with a constant thickness is assumed above intΓ . The growth-limiting 
substrates are assumed to be fully mixed above the boundary layer (the bulk fluid domain) 
and diffuse from the top of the boundary layer hΓ  into the biofilm. The domain below hΓ  
denotes the time dependent substrates transport domain tS . 

The A-K model developed by Alpkvist and Klapper [1] is presented here abbreviatively. 
Oxygen is chosen as the only biofilm growth-limiting substrate with a concentration of s , and 
diffuses from the top of the boundary layer hΓ . The mass balance of oxygen reads 
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where D  is the diffusivity of oxygen, and s  is a constant value of the concentration of 
oxygen. μ , Y  and 

2Ok  are constant parameters of the model and ρ  is the density of the 

biofilm. t: SsΓ →∂ ∩∂Ω  is the Neumann boundary for oxygen, and sn  denotes the normal 
vector of sΓ . The biofilm growth is modeled as advective transport following a potential flow 
driven by consumption and production. The biofilm is assumed as a potential flow and thus 
the growth velocity reads 

 ,pλ=− ∇u   (2) 
where λ  is the Darcy constant and ( ),p p t= x  is the pressure. { , }x z=x  refers to the 
coordinates system of the computational domain. The pressure p  is described by  
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where t: BpΓ →∂ ∩∂Ω  is the Neumann boundaries for pressure. pn  denotes the normal 

vectors of pΓ . Two kinds of biomasses, namely the active biomass and inert biomass, are 
considered in this paper. The active biomass will grow by consuming oxygen, and it will also 
decay with a constant rate dκ . Meanwhile, the active biomass transfers to the inert biomass 
with an inactivation rate iκ . Those two kinds of biomasses compose the biofilm. The 
evolution of the volume fractions of the active biomass 1υ  and the inert biomass 2υ  are 
described as 
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3.2 Finite calculus (FIC) method for stabilization 
The Finite calculus (FIC) method has been firstly introduced by Oñate et al. [6] to stabilize 

the hyperbolic dominated advection-diffusion-reaction (ADR) PDEs. The basic idea of the 
FIC method is by considering the balance of flux of a one dimensional problem in a finite 
domain using Taylor series expansion theory. 

Applying the FIC method to the linearized stationary one dimensional advection-reaction 
equation reads 

 d 0,
2
h rr

dx
− =   (11) 

 d: ,
d

r u
x
υ

κυ=− +   (12) 

where h  is a characteristic length scale related to the size of the finite domain which differs 
with different elements, and κ  is a reaction coefficient. The FIC formulation of the one 
dimensional time dependent advection-reaction equation reads 

 d 0.
2 d
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t x
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Integration of equation (13) with the weight function w  leads to the weak form 
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The last term in equation (14) acts as an additional diffusive contribution to the standard 
Galerkin procedure as 
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For a two-dimensional case, the additional diffusive contribution is added by transforming 
the additional element diffusion matrix curv

eD  from the local principle curvature directions (ξ  
and η ) of the solution into the global coordinates [6] 
 ,FIC T curv

e e=D T D T   (16) 
where 
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and ϕ  is the angle between the direction of the global coordinate system and the principle 
curvature direction of the solution.  
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 Total Biomass Active Biomass Inert Biomass  

t=5 
(day) 

  

t=15 
(day) 

  

t=20 
(day) 

  
Figure 6: The simulation result of set1 ( 61.0 10ik −= × ) 
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t=15 
(day) 

  

t=20 
(day) 

  
Figure 7: The simulation result of set2 ( 66.0 10ik −= × ) 

5 SUMMARY 
A new numerical strategy for simulating biofilm growth with A-K model has been 

presented in this paper. The combined FIC-TDG finite element method is applied to solve the 
transport equations of biomasses and a rolling ball algorithm is applied to determine the top of 
a boundary layer above the biofilm surface.  

Different patterns of biofilm are produced by the numerical simulations. The distribution 
of different biomasses is also observed from the simulation results. The numerical framework 
presented in this paper is shown to be sufficiently robust to simulate the biofilm growth 
problem with A-K model. 
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