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Non-intrusive uncertainty quantification (UQ) is applicable to many branches of the 
computational sciences and it has a strong foundation in mathematical approximation and 
interpolation theories. The unique contribution that computational fluid dynamics (CFD) can 
bring to the field of numerical methods for computationally intensive stochastic problems is 
the robust approximation of discontinuities in the probability space. There is extensive 
experience in the finite volume method (FVM) community with original robustness concepts 
for the reliable solution of discontinuities in the form of shock waves and contact surfaces in 
flow fields. We extend the essentially non-oscillatory (ENO) stencil selection and the subcell 
resolution (SR) approach here to the probability space. They are introduced into the simplex 
stochastic collocation (SSC) method for UQ. Results for Sod’s Riemann problem in Figures 
1-3 and for the RAE2822 airfoil with n=5 samples in Figure 4 demonstrate their effectiveness 
in non-deterministic CFD. 
The ENO spatial discretization [1] achieves an essentially non-oscillatory approximation of 
the solution of hyperbolic conservation laws. The notion of subcell resolution in FVM 
originated also from Harten [2] to prevent the smearing of contact discontinuities in the 
solution of hyperbolic conservation laws in the physical space X. 
The SSC method [3,4] is an advanced adaptive multi-element UQ method based on a simplex 
tessellation of the probability space Ξ with sampling points ξk at the vertexes of the simplex 
elements Ξj. The polynomial approximation in Ξj is built using higher degree interpolation 
stencils Sj, with local polynomial degree pj, consisting of the sampling points ξk in the 
vertexes of surrounding simplexes. The degree pj is controlled by a local extremum 
conserving (LEC) limiter, which reduces pj and the stencil size to avoid overshoots in the 
interpolation of the samples where necessary. SSC employs adaptive refinement measures 
based on the hierarchical surplus and the geometrical properties of the simplexes to identify 
the location of discontinuities. 
In order to obtain a more accurate solution of nonlinear response surfaces, ENO-type stencil 
selection is introduced into the SSC−ENO method [5]. For each Ξj, rj candidate stencils Sj,i, 
i=1,…,rj, are constructed that contain Ξj, and the stencil Sj is selected that results in the 
smoothest interpolation wj(ξ) in terms of the highest pj,i. 
However, in problems where the location of a discontinuity in the physical space is random, 
adaptive refinement in the probability space proves ineffective. For each point x in the 
physical space, the spatial discontinuity namely results in a jump at a different location ξ in 
the probability space.  
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Therefore, we introduce the concept of subcell resolution into the SSC−SR method [6] by 
extracting the discontinuity location xdisc in the physical space from each of the deterministic 
simulations for the sampled random parameter values ξk. These physical discontinuity 
locations xdisc are interpolated in the stochastic dimensions to derive a relation for the location 
of the discontinuity ξdisc in the probability space as a function of the spatial coordinate x. In 
the discontinuous cells, the interpolations wj(ξ) of the neighboring cells Ξj are then extended 
from both sides up to the predicted discontinuity location ξdisc. This leads to a genuinely 
discontinuous representation of the jump in the interior of the cells in the probability space. 

  
Figure 1: Simplex stochastic collocation. Figure 2: ENO stencil selection. 

 

  
Figure 3: Subcell resolution. Figure 4: Pressure standard deviation. 
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