HP-FEM AND HP-DGFEM FOR THE HELMHOLTZ EQUATION

J.M. Melenk\(^1\), A. Parsania\(^2\) and S. Sauter\(^3\)

\(^1\) Institute for Analysis and Scientific Computing, Vienna University Technology, Wiedner Hauptstr. 8-10, A–1040 Vienna, melenk@tuwien.ac.at, http://www.math.tuwien.ac.at/melenk
\(^2\) Institut für Mathematik, University of Zürich, Winterthurerstr. 190, CH-8057 Zürich
\(^3\) Institut für Mathematik, University of Zürich, Winterthurerstr. 190, CH-8057 Zürich, stas@math.uzh.ch

Key words: Helmholtz problem, scattering, high order method, dispersion error

We consider the question of discretizing the Helmholtz equation at large (real) wavenumber. For high order, piecewise polynomial discretizations we present a convergence theory that is explicit in the discretization parameters (mesh size \(h\) and approximation order \(p\)) and the wavenumber \(k\). In particular, we show for a class of Helmholtz problems quasi-optimality of the Galerkin discretization in the \(H^1\)-norm, if \(kh/p\) is sufficiently small and, at the same time, \(p\) is at least \(O(\log k)\). For a high order discontinuous Galerkin method (DGFEM), we show a similar result under the conditions that \(kh/\sqrt{p}\) is sufficiently small and \(p = O(\log k)\). While this condition holds for rather general meshes, we show that the condition that \(kh/\sqrt{p}\) be small can be relaxed to the condition that \(kh/p\) be sufficiently small if the DG-discretization is based on regular meshes.

REFERENCES

