
11th. World Congress on Computational Mechanics (WCCM XI)
5th. European Conference on Computational Mechanics (ECCM V)

6th. European Conference on Computational Fluid Dynamics (ECFD VI)
July 20 - 25, 2014, Barcelona, Spain

DEVELOPMENT OF EXPLICIT UNSTRUCTURED
MESH-BASED CFD SOLVER FOR LOW-MACH NUMBER

FLOWS USING GRAPHICS PROCESSOR UNITS

Anton Karpenko1, Vladislav Emelyanov2 and Konstantin Volkov3

1 Faculty of Mathematics and Mechanics, St Petersburg State University, Universitetsky
prospect, Old Petergof, St Petersburg, 198504, Russia, E-mail: aspera.2003.ru@mail.ru

2 Faculty of Power Engineering, Baltic State Technical University, 1, 1-ya Krasnoarmeyskaya
ulitsa, St Petersburg, 190005, Russia, E-mail: vlademelyanov@gmail.com

3 Centre for Fire and Explosion Studies, Kingston University, Friars Avenue, Roehampton
Vale, London, SW15 3DW, United Kingdom, E-mail: k.volkov@kingston.ac.uk

Key words: Computational Fluid Dynamics, Parallel Algorithm, Finite Volume Method,
Unstructured Mesh, Preconditioning, Graphics Processor Unit, CUDA.

The methods of computational fluid dynamics (CFD) are extensively applied in design
and optimization of industrial devices to get more insight into 3D unsteady flows through
fluid or gas passages. Accurate prediction of internal flows still remains a challenging task
despite a lot of work in this area.

The stagnation in the clock-speed of central processing units (CPU) has led to significant
interest in parallel architectures that offer increasing computational power by using many
separate processing units. Modern graphics hardware contains such an architecture in the
form of the graphics processing units (GPU). These platforms make it possible to achieve
speedups of an order of magnitude over a standard CPU in many CFD applications and
are growing in popularity [1].

The GPU employs a parallel architecture so each generation improves on the speed of
previous ones by adding more cores, subject to the limits of space, heat and cost. CPUs,
on the other hand, have traditionally used a serial design with a single core, relying instead
on greater clock speeds and shrinking transistors to drive more powerful processors. While
this approach has been reliable in the past, it is now showing signs of stagnation as the
limit of current manufacturing technology is being reached. Recent CPUs, therefore, tend
to feature two or more cores, but GPUs still enjoy a significant advantage in this area for
the time being.

Explicit time-marching algorithms are the most convenient ones to be ported on to the
GPU. This is because there is no iteration, and the new value of a variable depends only



Anton Karpenko, Vladislav Emelyanov and Konstantin Volkov

on the old time values. Hence, the update of a given variable is done independent of
variables being updated on other threads. There is no recursive relation between the
variables on the threads, since they are all known at the old time step. However, even for
explicit algorithms, a few changes are needed for efficiently implementation of numerical
algorithms on the GPU. These relate to the use of shared memory and the layout of
data structures. Memory coalescing and block size influence the speed achieved. The
data should be organized such that adjacent threads access adjacent nodal data. In
addition, data should be, where possible, copied to shared memory and re-used as much
as possible. Therefore, even explicit algorithm based CFD codes need to be reorganized
to take advantage of the GPU architecture.

Possibilities of the use of graphics processing units (GPU) for the simulation of flows of
viscous compressible and incompressible fluid are discussed. The finite volume method
is applied to solve 3D Euler and Navier–Stokes equations on hybrid and unstructured
meshes [2]. The unstructured hybrid code developed uses an face-based data structure
to give the flexibility to run on meshes composed of a variety of cell types. The non-
linear CFD solver works in an explicit time-marching fashion, based on a Runge–Kutta
stepping procedure. Convergence to a steady state is accelerated by the use of low-Mach
number preconditioning method for low-speed flows. Parallel computation is implemented
using the MPI (clusters) and CUDA technology (GPU). Solution of some fluid dynamics
problems on GPUs is presented. Speed-up of solution on GPUs in according to the solution
on CPU is compared with the use of different meshes and different methods of distribution
of input data into blocks. The results obtained are generally in reasonable agreement with
the available experimental and computational data, although some important sensitivities
are identified and discussed. Capabilities and accuracy of various finite difference schemes,
acceleration efficiency calculations due to parallelization of computational algorithms are
compared.

The computational procedure is used as a part of CFD package LOGOS developed in the
Institute of Theoretical and Mathematical Physics of the Russian Federal Nuclear Center
(Sarov, Russia). LOGOS package is widely used in mechanical engineering and aerospace
applications.

REFERENCES

[1] J. Sanders and E. Kandrot. CUDA by example: an introduction to general-purpose
GPU programming. Boston, Pearson Education, 2011.

[2] V. Emelyanov, A. Karpenko and K. Volkov. Development of advanced CFD tools
and their application to simulation of internal turbulent flows, Proceedings of the 5th
European Conference for Aeronautics and Space Sciences, 1–15, 2013.

2


