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    Rolling contacts are usual in various technical systems. Gear wheels in gearboxes, the motion of rolling 

elements in roller bearings or the Euler disk [1] can be mentioned here as examples. Even the sliding of a clutch 

disk on an elastic support can become unstable transitioning into a rolling motion [2]. In most cases rolling 

motion conditions yield non- holonomic constraint equations. Usually the non-holonomic constraints can be 

incorporated by the method of Lagrange multipliers. This formulation leads to index-2 differential algebraic 

problems. Different regularization approaches [3, 4] have been developed for higher index DAEs because of the 

numerical drift problems inherent for usual ODE methods. In the present paper we investigate a new 

regularization method that is motivated by physical considerations. Pure rolling is equal to “sticking” with a 

kinematically repositioned contact point. Usually sticking is modeled by introducing elasticity in the contact [5]. 

Although constraints are mainly enforced by the elasticity in that case and the dissipative terms are necessary in 

order to avoid numerical oscillations in the contact. A suitable choice of the order of magnitude of the dissipative 

forces enhances the numerical performance of the method. The purpose of this kind of 

regularization is to get a consistent description for sliding, sticking and rolling contacts. Stamm [6] applied this 

kind of regularization to a tangential contact law, extending the classical laws of friction to distributed contacts, 

where the problem of indeterminacy in the sticking state is circumvented by regularization. It this work we prove 

the convergency of the spring-damper regularization for the so called principal damping, which is motivated by 

the critical damping in the linear case, and the strong damping which is of the same magnitude order as the 

contact stiffness. 

 

 

Problem formulation and convergence theorems 

 

Consider the MBD problem with non-holonomic constraints which can be formulated as 

follows: 

 
     

 





T
M q q F q,q,t -G q λ

G q q 0
  (1) 

Here  M q denotes the mass matrix of dimension  n n  ,  G q the constraint matrix of 

dimension  m n  which is assumed to have the full rank m  and  F q,q,t  the column 

matrix of all external forces acting on the system. Note that if the functions are sufficiently 

smooth, the Lagrange’ multiplier can be calculated explicitly:  

    ; d d
-1

-1 T -1

q qλ = GM G G qq+GM F G G q   (2) 
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Consider the corresponding regularized problem: 

 

     

  ;
c d

 


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T
M q q F q,q,t - G q λ

G q q z λ z z
  (3) 

Here   is the small parameter describing the stiffness of the “sticking” contact,   is the 

damping exponent. If 1   one can speak about the strong damping (it means for small   the 

damping forces dominate over elastic forces in the relationship for the regularized Lagrange’ 

multiplier in (3)). The case 1 2   can be denoted as the principal damping because elastic 

and damping forces in the regularized contact are of the same magnitude order. 

It can be shown that the solutions of the constrained (1) and regularized (3) equations 

converge for sufficiently small   under certain assumptions concerning the smoothness of the 

introduced functions and the appropriate choice of the consistent initial conditions both for the 

strong and for the principal damping, i.e. 

 
     
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 for the time interval 1  in case of the principal damping

 for the time interval 1  in case of the strong damping

M O

M O









q,q - q,q

q,q - q,q
  (4) 

These estimates are valid at least after the short time interval in which the regularized system 

reaches the exponential vicinity of the constraint manifold. The estimation for the principal 

damping requires a certain relationship between the regularization parameters c  and d  in 

comparison with the maximal eigenvalues of the Matrix -1 T
GM G . Numerical examples are 

presented. 

 
Conclusions 

 

Convergency of the visco-elastic regularization is proven for nonholonomic constraints in 

general form. The proof is performed for the principal damping exponent. Numerical 

experiments confirm the optimal performance for this choice of the regularization parameters. 

The described approach enables consistent modeling of sticking, sliding and rolling contacts 

in multibody dynamics. 
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