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The quasicontinuum (QC) method was introduced to seamlessly bridge from atomistics
to the continuum by applying finite-element interpolation schemes to a coarse-grained
atomistic ensemble, see e.g. [6, 5]. This is achieved by three integral components of the
method: geometric constraints (which interpolate lattice site positions from the positions
of a reduced set of representative atoms), summation rules (which avoid energy/force
sampling over the full atomistic ensemble), and model adaptation schemes (which localize
full atomistic resolution and thereby efficiently minimize degrees of freedom). To date, nu-
merous QC flavors have been developed which mainly differ in the approximation schemes
used to implement the aforementioned three aspects.

Summation rules have become a key cornerstone of every QC method because model
accuracy and computational efficiency essentially rest upon evaluating all thermodynamic
quantities of interest (such as energies or forces) at a very small number of carefully-chosen
sampling atoms instead of the full atomistic ensemble, comparable to quadrature rules
commonly used in finite elements. We have carried out and will report results from a
comprehensive comparison of summation rules within the non-local QC formulation [7].

Summation rules now differ by the choice of (i) which lattice sites to choose as sampling
atoms, and (ii) how their weights are computed. The choice of sampling atoms is, in
principle, completely independent of the choice of representative atoms; there is no need
(in fact it has turned out to be disadvantageous) to evaluate energies and forces only at
the interpolation nodes. Successful examples of summation rules introduced previously
include node-based cluster summation [3] or quadrature-type summation [2, 8] with sam-
pling atoms chosen nearest to Gaussian quadrature points in addition to nodes in the
finite element mesh. Systematic mathematical error and stability analysis of node-based
cluster summation rules have highlighted the deficiencies of force-based QC schemes and
have advocated for an energy-based QC formulation [4, 1]. We therefore consider only
energy-based summation rules.
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While many previous studies have reported simple one- or two-dimensional examples
with simplified potentials to assess the accuracy of summation rules, we report the first
large-scale comparative review of existing summation rules, and we propose consistent
and efficient new summation rules. To this end, we summarize results obtained from
representative three-dimensional examples containing millions of degrees of freedom (in
turn representing billions of lattice sites) with realistic interatomic potentials. These
include the computationa of elastic constants (on uniformly and completely randomly
coarse-grained systems), the simulation of nano-indentation as well as nano-void expan-
sion. Besides a careful analysis of existing summation rules, we present a new summation
rule based on sampling atoms and weights based on a Voronoi tesselation, which shows a
superior combination of accuracy and efficiency.

References

[1] M. Dobson, M. Luskin, and C. Ortner. Accuracy of quasicontinuum approximations near
instabilities. J. Mech. Phys. Solids, 58:1741–1757, 2010.

[2] M. Gunzburger and Y. Zhang. A quadrature-rule type approximation to the quasi-continuum
method. Multiscale Model. Simul., 8(2):571–590, 2010.

[3] J. Knap and M. Ortiz. An analysis of the quasicontinuum method. J. Mech. Phys. Solids,
49(9):1899–1923, September 2001.

[4] M. Luskin and C. Ortner. An analysis of node-based cluster summation rules in the quasi-
continuum method. SIAM J. Numer. Anal., 47(4):3070–3086, 2009.

[5] R. Miller, M. Ortiz, R. Phillips, V. Shenoy, and E.B. Tadmor. Quasicontinuum models of
fracture and plasticity. Engineering Fracture Mechanics, 61:427–444, 1998.

[6] E.B. Tadmor, M. Ortiz, and R. Phillips. Quasicontinuum analysis of defects in solids. Philos.
Mag. A, 73(6):1529–1563, June 1996.

[7] G.N. Venturini, J.S. Amelang, and D.M. Kochmann. Summation rules for the quasicontin-
uum method. J. Mech. Phys. Solids. submitted for publication.

[8] Q. Yang, E. Biyikli, and A.C. To. Multiresolution molecular mechanics: Statics. Computer
Methods in Applied Mechanics and Engineering, 258(0):26 – 38, 2013.

2


