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Over  the  last  few years,  several  discretization  methods  for  diffusive  problems have  been
proposed  that  support  general  meshes  including  polygonal  or  polyhderal  elements  and
nonmatching interfaces. In most of the cases, such methods are obtained by preserving (or
mimicking)  to  some extent  the  structure  of  the  continuum operator  at  the  discrete  level.
Instances of structure-preserving lowest-order methods are Mimetic Finite Differences [8], the
Mixed/Hybrid  Finite  Volume  method  [7],  and  Compatible  Discrete  Operators  [3].  The
similarities  among  the  above-mentioned  approaches  and  with  other  methods  have  been
highlighted  in  several  papers;  cf.,  e.g.,  [3,6,7].  A rather  different  point  of  view from the
previous  works  is  adopted  in  [5],  where  the  application  of  interior  penalty  strategies  to
consistent reconstructions of differential operators is considered.
 Until recently, the main focus has been on lowest-order methods. Very recent works
consider,  however,  the  extension  to  higher  orders.  An  example  is  provided  by  the
arbitrary-order nodal mimetic method of [2]. We also recall here the Virtual Element method,
whose basic principles are exposed in [1]; cf. also references therein. The adjective “virtual”
refers here to the fact that one defines a variational formulation in a finite element fashion, but
without explicitly defining the underlying basis functions. We also mention here a recent work
on  mimetic  products  of discrete  differential  forms  [4],  which  also  contains  an  extensive
bibliographic section.

We propose  here  a  new  family  of  arbitrary  order  mixed  methods  for  anisotropic
heterogeneous diffusion on general polyhedral meshes. A key point in the definition of the
methods is the choice of flux degrees of freedom, which, for a given integer k ≥ 0, are selected
to be the fluxes of polynomial potentials of degree ≤ k inside cells and polynomials of degree
≤ k at faces. Cell degrees of freedom are hence not used in the lowest-order case k = 0. Based
on these degrees of freedom we reconstruct (i) a discrete divergence Dh

k which satisfies the
usual commuting diagram property for potentials that are broken polynomials of degree ≤ k
and (ii) a flux reconstruction that is exact when the potential is a polynomial of degree ≤ (k
+1) inside  each element ( consistency)  and has  coercivity  properties  on the  kernel  of  Dh

k

(stability). Stability is achieved by penalizing residuals inside a pyramidal submesh of each
element.  The flux  reconstruction  and the  divergence  are  then  used  to  define  the  discrete
counterparts of the bilinear forms that appear in the continuous mixed formulation. Under the
usual regularity assumptions for the exact solution,  it  is  proved that the error on the flux
converges  as  hk+1 (h denotes  here  the meshsize).  Additionally, provided elliptic  regularity
holds,  one can prove a  supercloseness result for the potential  as in classical mixed finite
element methods, meaning that the distance from the  L2-orthogonal projection of the exact
potential converges as hk+2 . Several variations are considered including, in particular, virtual
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versions which do not require to solve local problems for the stabilization term. The link with
existing methods in the lowest-order case is also discussed. Figure 1 shows convergence rates
for the approximate solution on the unit  square Ω = (0,1) 2 of  the homogeneous Dirichlet
problem with exact solution u = sin(πx1) sin(πx2) and unit diagonal diffusion tensor on the
hexagonal mesh family of [6, Section 4.2.3].

Figure 1. Convergence results
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