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The fabric tensor is a good measure to determine the anisotropy of a cancellous bone. 
There are three types of methods to measure the fabric tensor of a cancellous bone – the mean 
intercept length (MIL) [1,2], the volume orientation (VO) method [3], and the star volume 
distribution (SVD) method [4,5].  

Ultrasound is one method to determine the mechanical properties of a cancellous bone 
[6,7]. It was found that the elastic modulus measured by ultrasound is almost equal to the 
mechanically tested and measured elastic modulus [7,8]. Recently Biot theory [9.10,11] was 
employed to characterize the mechanical properties of a cancellous bone. Experimentally and 
theoretically two waves were observed in cancellous bone ultrasound measurements [12,13]. 
It is believed that the fast wave follows the trabeculae, the bone matrix strut in cancellous 
bone, and the slow wave follows the water (or marrow) in the porous space in cancellous bone 
[6].  
 We believe that the speed of a fast wave in Biot theory is identical to the speed of 
sound predicted by bar equation because the elastic modulus measured by ultrasound using 
the bar equation is identical to the mechanically tested and measured elastic modulus [7,8]. 
Thus we expand the bar equation by using the fabric tensor and propose a simple equation for 
further experiments. 
 After employing the equations of fabric tensor with the elasticity tensor, we conclude 
that 

   2
11 1 1

n
si i iE E d II F F  

  
      .         

Here iE  is the elastic modulus in i direction, sE  is the elastic modulus of solid matrix, 1d  is 

the undetermined coefficient, and   is the porosity. For isotropic material, the elastic 

modulus iE  is simply determined by the equation  1
n

siE E    without considering the 

anisotropic behavior. Wear [13] tested 53 human calcaneus samples and found the best fit for 
the curve between the speed of sound (SOS) and the porosity, of which exponent n is 1.75. By 
employing the bar equation, we can simply conclude the relationship between the speed of 
sound (SOS) of the fast wave and the fabric tensor iF ,  
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where s  is the bone matrix density and w  is the density of water. The above equation is the 
major result obtained in this paper and it requires further experiments to determine the fabric 
tensor and unknown coefficients 1d . After obtaining the fabric tensors by using a micro-CT, 

we can determine the unknown coefficient 1d . Then we can simply formulate the speed of 

sound (SOS) in terms of fabric tensors.  
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