WELL-BALANCED \(r \)-ADAPTIVE AND MOVING MESH SPACE-TIME DISCONTINUOUS GALERKIN METHOD FOR THE SHALLOW WATER EQUATIONS

S. Rhebergen

University of Oxford, Mathematical Institute, Andrew Wiles Building, Radcliffe Observatory Quarter, Woodstock Road, Oxford OX2 6GG, United Kingdom, sander.rhebergen@maths.ox.ac.uk

Key words: Discontinuous Galerkin methods, moving mesh methods, \(r \)-adaptivity, well-balanced methods, shallow water equations

To accurately solve the shallow water equations on moving and deforming meshes is non-trivial. The main problem one faces on moving meshes is how to maintain a conservative numerical discretization and it has been shown (e.g. Lesoinne and Farhat [1]) that the so-called Geometric Conservation Law (GCL) is essential on moving meshes for the time-accuracy of the solution.

The space-time Discontinuous Galerkin (DG) method, in which space- and time are discretized simultaneously on a space-time domain, automatically satisfies the GCL and has proven to be an excellent method to achieve accurate solutions on moving meshes. In this talk I will discuss how to obtain a well-balanced space-time DG method even on moving meshes and deforming domains [2]. Because of this well-balancedness property on moving meshes, it provides a natural framework in which to incorporate \(r \)-adaptivity in which nodes of the mesh are moved to areas of interest, therefore locally increasing the resolution without increasing the degrees of freedom. I will show numerical simulations in which I test well-balancedness on moving meshes and deforming domains and the use of \(r \)-adaptivity.

REFERENCES
