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An efficient non-iterative numerical algorithm of second order approximation in spatial and 

temporal variables is suggested for the solution of advection-diffusion equation on the surface 

of a two-dimensional sphere:  
 

div( ) ( )t = f       U ,      
0( ,0) ( )x x  . 

 

Here ( , )x t  is a physical substance. The new method can be applied to problems of global 

transport of various passive pollutants, temperature, humidity, etc. in the atmosphere [1,2]. 

 

The vector field of velocity is assumed to be known and non-divergent. The spherical regular 

grid is used, and the surface of sphere is partitioned into a set of non-overlapping grid cells of 

trapezoidal form and two round pole cells. The discretization of advection-diffusion equation 

in space is performed with the finite-volume method by applying Gauss’s theorem to each 

grid cell. The discretization in time is carried out in each double-step interval by using the 

symmetrized (double cyclic) splitting method by Marchuk [3,4] which is based on the 

application of Crank-Nicolson scheme. The numerical scheme obtained is of second order 

approximation in space and time.  

 

The sum of discrete equations over all grid points gives the equation of balance of mass in the 

discrete system. Since every one-dimensional numerical scheme is unconditionally stable, the 

whole numerical algorithm is also unconditionally stable. The numerical scheme correctly 

describes the behavior of the total mass and the discrete analogue of 
2L -norm of solution in 

the forced and dissipative discrete system. Besides, in the particular case of closed discrete 

system (in the absence of dissipation and external forcing), both the total mass and the norm 

of solution are conserved in time. Due to Lax’s theorem [5], the numerical solution converges 

to the solution of the original continuous problem at a rate that increases quadratically with 

decreasing the sizes of the spatial-temporal grid. 

 

The matrix of each of the one-dimensional discrete problems, obtained in the process of 

splitting with respect to longitudinal and latitudinal directions, is positive semi-definite, and 
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hence, any of these problems has the only solution. Besides, every problem in the longitudinal 

direction is periodic, and is solved by using Sherman-Morrison's formula [6]. And the 

problems in the latitudinal direction are solved from the North Pole to the South Pole by the 

bordering method that requires a prior definition of the problem solution in both poles. The 

application of the bordering method leads to a set of problems of linear algebra with 

tridiagonal matrices (along each meridian), which are solved by using Thomas’s factorization 

method [7]. The new algorithm is direct (without iterations), efficient and rapid in realization. 

Parallel processors can be used in solving the systems of split equations at each splitting step.  

 

This method can also be applied for solving pure advection problems, linear and nonlinear 

diffusion problems on a sphere and stationary elliptic problems on a sphere of the form 
 

 ( ) ( )    = f x . 

 

In the latter case, the solution is sought as the limit as t , of the solution ( , ) x t  of the 

following non-stationary problem 
 

( ) ( )      t = f x  

 

with arbitrary initial condition. 
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