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 To reduce vibrations and noise, viscoelastic materials are often used in many domains 
(e.g., the aerospace industry, the automobile industry) as passive damping solutions. To 
maximize this kind of damping, these materials are usually sandwiched between two identical 
elastic layers (Figure 1). In this configuration, the damping is introduced by an important 
shear deformation in the viscoelastic central layer. The governing equation, for a beam 
excited by a force P, is nonlinear with respect to circular frequency and displacement as 
follows: 

( )[ ] PUMKK v =++ 2
0 ωωE  (1) 

where: ω  is the vibration circular frequency; M is the global mass matrix; 0K  and vK  are 

real constant stiffness matrices; ( )ωE  is the complex Young’s modulus of the viscoelastic 
core. 

 
Figure 1. Cantilever viscoelastic beam excited by P 

 
 Many investigations have focused on viscoelastic sandwich structures modeling. A 
review of various theories can be found in references [1, 2]. The most methods used in the 
literature could lead to high computational cost in the case of large scale structures, and only a 
few studies have focused on cost reduction. From the solutions proposed in the literature one 
can found: the condensation method, substructuring technique, one-mode Galerkin's procedure 
and Padé approximants [3, 4, 5].  
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In this paper, a reduction method is combined to asymptotic numerical method [6] for 
solving the governing equation (1). In this way, one can reduce the computational cost and 
memory space considerably. Three reduction bases are tried: 

- The first matrix contains the linear eigenvectors Φ=ℜ ; 
- The second one contains the linear eigenvectors enriched by vectors computed by 

considering the viscoélastic properties: [ ]ΦKKΦ v
1−=ℜ .  

- The third one is built by initial resolution of the equation (1). 
  
The validity of the present method is illustrated in the example of cantilever beam 

(Figure 1) with dimension �177 ∗ 12,7���	 [7]. Results from the full calculation without 
reduction and those from the reduced calculation are superposed for comparison (Figure 2). 
The results shown represent the evolution of the transverse displacement W at the excitation 
point with respect of the circular frequency. Twenty orthonomalised vectors are used in 
reduction matrices. One can note that the first basis gives good results for small amplitudes 
only. The two last bases give good results comparing to those from a full calculation. 
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Figure 2. Transverse displacement with respect of circular frequency 
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