DIMENSION-INDEPENDENT, LIKELIHOOD INFORMED MCMC SAMPLERS FOR BAYESIAN INVERSE PROBLEMS

Tiangang Cui1, Kody J.H. Law2, and Youssef M. Marzouk3

1 Aero Astro, MIT, tcui@mit.edu, http://uqgroup.mit.edu/profiles
2 SRI UQ Center, CEMSE, KAUST, kody.law@kaust.edu.sa, https://sites.google.com/site/kodyjhlaw/home
3 Aero Astro, MIT, ymarz@mit.edu, http://uqgroup.mit.edu/profiles

Key words: function-space MCMC, Bayesian inverse problems, Metropolis-Hastings

When cast in a Bayesian setting, the solution to an inverse problem is given as a distribution over the space where the quantity of interest lives. When the quantity of interest is in principle a field then the discretization is very high-dimensional. Formulating algorithms which are defined in function space yields dimension-independent algorithms, which overcome the so-called curse of dimensionality. These algorithms are still often too expensive to implement in practice but can be effectively used offline and on toy-models in order to benchmark the ability of inexpensive approximate alternatives to quantify uncertainty in very high-dimensional problems. Inspired by the recent development of pCN and other function-space samplers \cite{1}, and also the recent independent development of Riemann manifold methods \cite{2} and stochastic Newton methods \cite{3}, we propose a class of algorithms \cite{4, 5} which combine the benefits of both, yielding various dimension-independent and likelihood-informed (DILI) MCMC sampling algorithms. These algorithms can be effective at sampling from very high-dimensional posterior distributions.

REFERENCES

