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Topology optimization attempts to find the optimal distribution of material within a de-
sign space, providing the basic layout and shape of a structure. The problem of identifying
regions which should contain material and those that should contain void can be efficiently
solved by utilizing analytical sensitivity information. However, in engineering optimiza-
tion problems this information is not generally available, for example when attempting
to design crashworthiness structures. In such cases non-gradient approaches or finite dif-
ference gradient estimations may be used, however these become prohibitively expensive
in typical topology optimization problems. Therefore, we propose a heuristic alternative
for topology optimization in which regression models are trained in order to replace pre-
defined analytic sensitivities: Topology Optimization by Predicting Sensitivities (TOPS).
With TOPS it is possible to drastically reduce the number of quality evaluations required,
compared to finite difference gradient estimation.
Density-based methods [1], assign a continuous variable to each cell of a finite element
representation of the design space. Using this representation, TOPS combines finite differ-
encing with the assumption that Local State Features (LSF) associated with each design
variable can be used for predicting its corresponding sensitivity. After evaluating the
initial structure, a random subset of the variables is chosen and their sensitivities are
estimated separately using finite differencing. The LSF of these variables and the accord-
ing sensitivity estimate are stored in a database of sensitivity samples and subsequently
a regression model is trained. The regressor predicts sensitivity estimates for the vari-
ables which were not selected for finite differencing, using their respective LSF. Based
on the sampled and predicted sensitivities the design is updated using a gradient-based
optimizer. The new design is accepted if its quality constitutes an improvement, other-
wise additional sensitivity samples are collected, added to the database and the model is
improved. In this way, TOPS iteratively trains a model, which represents a strategy for
updating the design. The process of predicting sensitivities and updating the design is
repeated until the quality of the design cannot be improved any further.
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Figure 1: The cost of TOPS for different feature sets and predictors normalized to the baseline cost is
plotted. For each variant of TOPS also the design resulting from the run with the median quality is
shown. In addition the number next to each design provides the corresponding objective value. The box
in the upper right corner shows the design space with boundary conditions and the baseline solution.

In order to evaluate the proposed method and to compare the results to known solutions,
it was applied to the problem of optimizing a minimum compliance cantilever in a rectan-
gular design space. Different variants of TOPS, using linear and non-linear predictors [2]
and different sets of features were evaluated. Basic LSF are the elemental displacement
vector and the density of the element to which the design variable is associated. Sets of
LSF with increasing quality were constructed by utilizing higher order products of the
basic LSF and by including the elemental strain energy as LSF. The results of a statis-
tical evaluation are compared to a baseline obtained by naive finite difference gradient
estimation in terms of quality and computational cost. Fig. 1 provides an overview of the
main results. For more descriptive LSF, the solution quality is improving while the com-
putational cost, measured by number of finite element analysis simulations, is decreasing.
In most experiments, designs very similar to the baseline design are obtained, while the
cost is reduced significantly compared to the baseline (by 97.6% in the best case).
The proposed algorithm is a novel heuristic for topology optimization, not requiring an-
alytical sensitivity information and was demonstrated to generate feasible topological
solutions. As performance and cost depend on the quality of the predictions, we provide
recommendations for the choice of model and LSF based on the conducted experiments.
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