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A large variety of components of engineering interest, including for example  tires, dampers and seals, 

employs rubbers and rubber-based composites  showing a marked viscoelastic behavior. Due to the 

complexity intrinsically involved to simulate the mechanics of these materials, the scientific 

community has developed a wide number of contributions (see for example [1-4]).  Here, particular 

attention is paid to investigate the steady state sliding contact between viscoelastic rough solids. 

Indeed, the authors have already proposed in [2] a novel methodology to determine the contact 

solution for the steady-state contact between smooth bodies. For  this last case, the numerical theory 

has also been experimentally validated in [2].  In this paper, we show how the same method can be 

effectively employed when accounting for the role played by the surface roughness. This is not trivial 

at all since it requires to take into account a number of scales covering  several orders of magnitude 

and, therefore, generally speaking, to have a very fine discretization of the space and the time 

domains. On the other hand, modern engineering design must consider roughness since it influences 

phenomena of paramount importance, like viscoelastic friction and percolation.   

Hence the necessity of investigating the main peculiarities of viscoelastic rough contact. 

Now, regarding the numerical methodology, the viscoelastic contact of two sliding surfaces is 

formulated in terms of a Green’s function approach, thus extending the innovative boundary element 

formulation proposed in Ref. [4] for elastic materials. This procedure when compared to conventional 

FE methods [2] presents a noteworthy computational efficiency and an outstanding accuracy in the 

description of the interfacial stresses and strains.  To this end, in the framework of linear 

viscoelasticity, we introduce the formulation based on the following integral equation: 

 

                                                       ∫                   
 

                                                      (1) 

  

Where         is the in-plane position vector,      is the surface displacement,      is the 

interfacial stress in the contact area A, v is the sliding or rolling velocity, and        is the Green’s 

function which parametrically depends on v. The function        has been calculated by solving the 

problem of a viscoelastic material loaded with a moving (at constant velocity v) concentrated unit 

load. One of the main advantages of our approach is the capability of dealing with a very general 

linear viscoelastic material with a continuum distribution of relaxation times. Once calculated the 

stresses and the strains by inverting the linear system obtained discretizing Eq. (1), the viscoelastic 

friction force can be easily determined (see [2] for details). 

The methodology so developed can be employed to elucidate the two main points marking the 

viscoelastic contacts: these are the viscoelastic friction and the anisotropy of the contact solution. As 

for the friction, we have the bell-shaped curve reported in Figure 1a: the curve, calculated for a 

paradigmatic one-relaxation-time material, shows zero friction in the elastic regimes and, in parallel, a 

maximum when the viscoelastic effects are greatest.  
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Fig. 1a: Friction coefficient as a function of the 

dimensionless sliding speed ξ=vτ₀/L being v the speed,  τ₀ 
the relaxation time and L the side of the computational 

cell.   

Fig 2b: Polar plots of m₂(θ)  for ξ= 

1.17 10⁻² . 

  

Furthermore, in the paper, we investigate the anisotropy of the contact solution in terms of contact area 

and of deformed region. This phenomenon is not deeply investigated in literature, but has an 

outstanding importance for example in all the components where fluid percolation and leakage have to 

be controlled. A possible quantification of the phenomenon can be carried out by looking at the 

quantity m₂(θ) that is the second order spectral momentum of a profile trace made at an arbitrary angle 

θ with respect to the x axis and can be calculated by the following relation: 

 

                                            
                       ₀₂                        (7) 

 

where m₂₀ is the value of the profile second order momentum along the x axis ( i.e. θ=0 ), m₀₂  is the 

value of the profile second order momentum along the x axis ( i.e. θ=π/2 ) and m₁₁ is the association-

variance of slope in these two directions.  As a matter of fact, if the surface is perfectly isotropic, the 

momenta m₂₀ and m₂₀ are equals, while m₁₁ is zero. In this case, therefore, by plotting m₂(θ) in a 

polar diagram, we obtain a circumference with radius r=m₂₀=m₂₀ . On the other side, if anisotropy is 

present, we have an ellipse, where the ratio between the axis, named γ , and the angle Θ of the profile 

with the maximum m₂(θ) can be employed as quantitative parameters. Indeed, in Figure 1b, we 

observe that the surface shows a consistent anisotropy with γ=0.70 . Furthermore, Θ is almost equal to 

π/2 , thus being perpendicular to the sliding speed assumed parallel to x axis. Interestingly, we find the 

greatest  anisotropy and the greatest fiction for the same speed value. 
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