SHARP INTERFACE MODEL FOR SOLID-STATE DEWETTING PROBLEM WITH WEAK ANISOTROPIC SURFACE ENERGY

Yan Wang1, Wei Jiang2 and Weizhu Bao3

1 National University of Singapore, Block S17, 10 Lower Kent Ridge Road, Singapore 119076, Singapore, A0086260@nus.edu.sg and N/A
2 Wuhan University, School of Mathematics and statistics, Wuhan University, Wuhan 430072, China, jiangwei1007@foxmail.com and N/A
3 National University of Singapore, Block S17, 10 Lower Kent Ridge Road, Singapore 119076, Singapore, matbaowz@nus.edu.sg and http://www.math.nus.edu.sg/~bao/

Key words: Solid-state dewetting, Sharp interface model, Weak anisotropic energy, Spline interpolation.

We proposed a sharp interface model for solid-state dewetting problem with weak anisotropic surface energy. Instead of the traditional static boundary condition, we proposed a dynamic boundary condition to deal with the evolution of contact points. As to numerical simulation, we use front tracking method with explicit finite difference scheme based on cubic spline interpolation. At last, we present a series of two-dimensional simulation results.

REFERENCES

