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Transition to turbulence in wall-bounded flow such as pipe flow or plane Couette flow
is essentially caused by finite amplitude disturbances, and has been one of the biggest
open problem in fluid dynamics. Recent works by Kreilos & Eckhardt[1] and Avila et al.[2]

showed numerically the onset of chaos in plane Couette flow and pipe flow respectively.
In both works, besides periodicity, they imposed additional symmetry conditions and
successfully obtained the stable nonlinear solutions, which are the upper-branches arising
from saddle-node bifurcations to be the origin of chaotic attractors via period-doubling
cascade or torus explosion. They also showed that the chaotic attractors lose their stability
within narrow ranges of Reynolds number (Re).

Here we consider incompressible Newtonian flow in a minimal plane Couette system with
the domain size 1.755π×2×1.2π. (see for example, Kawahara[3]) No additional symmetry
is imposed besides the periodic boundary conditions. We integrate numerically this system
using spectral-Galerkin method and investigate final flow state for 236 ≤ Re ≤ 247.

Figure 1 displays the bifurcation of this systems as the value of the local maximum Ecf

of the cross-flow energy[1] as a function of Re. Laminar flow(LF), which corresponds to
Ecf = 0, is linearly stable. For 236.1 ≤ Re ≤ 246.6, several attractors coexist with LF.
The onset of the nonlinear solutions is the pair of periodic orbits (P2) caused by saddle-
node bifurcation [3], and each of them has two local maxima per cycle but these have the
same value. (This is also the case for P6.) The upper-branch of P2 (UBP2) loses stability
at Re = 246.1[3] through a supercritical Neimark-Sacker bifurcation resulting in the stable
torus. P4 and P6 also appear from saddle-node bifurcation and each of them leads to a
chaotic attractor via period-doubling.

Important global bifurcations are discussed below. At Rec1 = 240.4 the boundary crisis
occurs between UBP2 and the chaotic attractor, and the chaotic trajectory can approach
to any neighborhood of the LBP4. Above this Re the chaotic attractor is replaced by the
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chaotic saddle and all trajectories in its neighborhood are attracted to UBP2. This chaotic
set also touches LBP2 at Rec2 = 240.9 leading to to a homoclinic tangle[4] on the edge of LF
basin, and the fractal basin boundaries appear between UBP2 and LF (Figure 2). Above
Rec3 the chaotic attractor originating from P6 disappear and trajectories starting in its
neighborhood decay to LF. At Rec3 the chaotic orbit does not touch any LB in Figure 1.
Finally at Rec4 the collapse of the torus occurs and there is no attractor except for LF. At
the conference, we will discuss more detail about the formation/destruction of the fractal
basin boundaries caused by the boundary crises and the heteroclinic connections among
the periodic orbits.
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Figure 1: Bifurcation diagram of minimal plane Couette flow for 236 ≤ Re ≤ 247. Lines and filled
areas represent attractors and dotted lines are saddles. At Re = 236.1, 239.8 and 243.2 periodic orbits
are created by saddle-node bifurcation. During one cycle these have two, four and six local maxima of
Ecf respectively and have stable upper branch (P2, P4 and P6). Major global bifurcations are found at
Rec = 240.4, 240.9, 244.2 and 246.6 , which are indicated by arrows
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Figure 2: Section of attraction basins of laminar flow(white), P2(black) and P4(blue) along a line in
phase space. Variable r on the horizontal axis denotes the distance from the origin (laminar flow).
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