Numerical simulation of a droplet impact onto a thin liquid film using SPH method

Yuta Kikuchi¹ and Haruo Terasaka²

¹ Department of Computer and Information Systems, University of Aizu
Tsuruga, Ikkimachi, Aizuwakamatsu, Fukushima, Japan
d8151101@u-aizu.ac.jp

² Center for Advanced Information Science and Technology, University of Aizu
Tsuruga, Ikkimachi, Aizuwakamatsu, Fukushima, Japan
terasaka@u-aizu.ac.jp

Key Words: SPH method, droplet impact, thin liquid film, splash, surface tension, mixing

In this paper, we investigated behavior of splash by the impact of liquid drop onto a thin liquid layer. We carried out three-dimensional computational simulations of this phenomenon using the smoothed particle hydrodynamics (SPH) method. To take into account of surface tension, Morris’s model was used[1]. We focus on the relationship between thickness of the liquid layer and the characteristics of the splash and mixing. Furthermore, we have compared these simulations with experimental data. For various thickness of the liquid layer, characteristics of the calculated crown show good agreement with available experimental data. Meanwhile, it is found mixing features depend on the depth of the liquid layer.

REFERENCES