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INTRODUCTION 

The topic of floating wind turbines has recently attracted increasing attention due to its 
potential to capture part of the large offshore wind energy resource. Numerical simulation is 
the most viable way to tackle such problem but poses a major challenge due to the need to 
resolve the coupled interaction of atmospheric turbulence and ocean waves, the arbitrary 
geometric complexity of floating structures, the inherent two-phase nature of such flows, and 
the dominant role of complex nonlinear phenomena such as turbulence and free surface 
effects. In this work, we present a powerful numerical framework to simulate the coupled 
interactions of complex floating structures with large-scale ocean waves and atmospheric 
turbulent wind.  

NUMERICAL METHODS 

The near-field approach solves the spatially-filtered incompressible Navier-Stokes equations 
using a two-phase flow formulation with the level set method. The flow properties adopt their 
corresponding values in each phase while there is a smooth transition across the interface, 
which is determined by a signed distance function The governing equations of the flow 
motion in generalized curvilinear coordinates read as follows 
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where i
l  are the transformation metrics, J  is the Jacobian of the transformation, iU  are the 

contravariant volume fluxes, iu  are the Cartesian velocity components,  is the density,   is 
the dynamic viscosity, p  is the pressure, lj  is the subgrid-scale stress (SGS) tensor and iG  is 
the gravitational acceleration. A dynamic Smagorinsky SGS model with wall modeling is 
implemented for large-eddy simulation (LES) of complex flows. The motion of the air-water 
interface is modeled by solving a level set equation. Extensive details of this solver are given 
in Kang and Sotiropoulos [3]. The momentum equations are discretized using a second-order 
central differencing scheme for the diffusion and advective terms, and a second-order Crank-
Nicholson method for the time advancement. A fractional step method is used to enforce the 
continuity condition. To simulate FSI problems involving geometrically complex immersed 
floating bodies, we use an extension of the FSI Curvilinear Immersed Boundary method 
(CURVIB) of Borazjani et al. [1] to carry out LES incorporating free surface effects with the 
previously discussed level-set formulation. The FSI method is used to solve the structural 
equations governing the motion of the body coupled with the level-set equation. 

The large-scale wave and wind model is based on the two-fluid coupled approach of 
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