THREE DIMENSIONAL FRACTURE GROWTH AS A STANDARD DISSIPATIVE SYSTEM: SOME GENERAL THEOREMS AND NUMERICAL SIMULATIONS.

Salvadori A.¹ and Fantoni F.²

¹ Department of Mechanical Engineering, Eindhoven University of Technology, P.O. Box 513, 5600 MB Eindhoven, The Netherlands, a.salvadori@tue.nl
DICATAM, University of Brescia, via Branze 43, 25123, Italy, alberto.salvadori@ing.unibs.it
² DICATAM, University of Brescia, via Branze 43, 25123, Italy, francesca.fantoni@ing.unibs.it

Key words: 3D Fracture Mechanics, crack growth, plasticity analogy.

The crack propagation problem for linear elastic fracture mechanics has been studied by several authors exploiting its analogy with standard dissipative systems theory (see e.g. [1, 2]). In recent publications of the Authors [3, 4, 5] minimum theorems were derived in terms of crack tip quasi static velocity for two and three-dimensional fracture mechanics. They were reminiscent of Ceradini’s theorem [6] in plasticity. Following the cornerstone work of Rice [7] on weight function theory, Leblond and coworkers [8, 9] proposed asymptotic expansions for Stress Intensity Factors (SIFs) in three dimensions. As formerly in 2D, expansions can be given a Colonnetti’s decomposition [9] interpretation. In view of the expression of the expansions proposed in [8, 9] however, symmetry of Ceradini’s theorem operators was not evident. Following a different path of reasoning, minimum theorems have been finally derived. Moving from well established theorems in plasticity, algorithms for crack advancing have been formulated. Their performance is here presented within a set of classical benchmarks.

REFERENCES


