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The development of high-order computational methods for solving partial differential
equations on unstructured grids has been underway for many years. Such methods crit-
ically depend on the availability of high-quality curvilinear meshes, as one badly-shaped
element can degrade the solution in the whole domain [2]. The usual way of generat-
ing curved meshes is to first generate a straight sided mesh and to curve mesh entities
that are classified on the boundaries of the domain. The latter operation introduces a
“shape-distortion” that should be controlled if we suppose that the straight sided mesh
is composed of well-shaped elements.

In [1] Bergot et al. recently proposed a new family of nodal pyramidal finite elements
that are conform with hexahedra, tetrahedra and prisms for arbitrary orders. Moreover,
they showed that their new pyramidal elements are optimal in the sense that the final
error estimate is in O(hr 4+ 1) in L*-norm [1, 4]. Yet, the characterization of pyramids for
which the mapping between the reference and the physical element is invertible remained
an open question.

In [3] we recently introduced an algorithm that computes sharp bounds on the Jaco-
bian determinant of triangles, quadrilaterals, hexahedra, tetrahedra and prisms. Those
bounds allow to guarantee the geometrical validity of an element, i.e. that its mapping
is invertible. The key feature of the method is that we can adaptively expand the Jaco-
bian determinant in terms of Bézier functions. Bézier functions have both properties of
boundedness and positivity, which allow sharp computation of minimum or maximum of
the interpolated functions.

In this work, we propose an adaptation of this method to the pyramids proposed by
Bergot et al. Instead of classical polynomial Bézier functions, we use functions composed
of rational fractions. A good choice of them allows to obtain the necessary properties.
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Figure 1: Three-dimensional mesh with second order elements. The geometry consists of a cube with
spherical holes. Pyramids make the transition from the hexahedra that fill the holes to the tetrahedra
that fill the rest of the volume. Green elements are straight-sided tetrahedra. Blue elements are valid
curved tetrahedra or pyramids, while elements between red and black are invalid curved tetrahedra or
pyramids.

Results show that we are able to detect all invalid pyramids. On the three-dimensional
microstructure of figure 1, second order pyramids have been generated with a naive algo-
rithm. We measured the minimum of distortion d,,;, as defined in [3]. Invalid elements

have a negative minimum distortion and we successfully detected all 5589 invalid pyramids
(out of 5760) in the grid.
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