KOITER ASYMPTOTIC ANALYSIS IN TECHNICAL APPLICATIONS

Antonio Madeo1, Giuseppe Zagari1, Giovanni Zucco1,
Raffaele Zinno1 and Raffaele Casciaro1

1 DIMES, University of Calabria, 87030 Arcavacata di Rende (Cosenza), Italy,
*antonio.madeo81@unical.it, giuseppe.zagari@unical.it, giovannizucco@gmail.com,
zinno@unical.it, rcasciaro@gmail.com

Key words: Koiter asymptotic approach, instability problems, thin walled structures,
geometrically nonlinear analysis, corotational formulation, mixed finite element.

During the years, many researchers tried to make operative the asymptotic analysis ini-
tially proposed by Koiter [1] from numerical point of view. The method is considered very
attractive for its advantages with respect to path–following approach. Mainly, these con-
sist in an accurate post–buckling analysis, with low computational cost, specially in the

case of modal interaction and in an efficient imperfection sensitivity analysis. The main
difficulties arise in the availability of geometrically coherent (almost until fourth order)
structural model and in an accurate evaluation of their high order energy variations.

The use of corotational formulation, decomposing the geometrical nonlinearity from the
estatic response, within a mixed formulation, allows to have a general, efficient and robust
finite element implementation of Koiter analysis [2, 3]. Our more recent technology [4, 5],
in terms of numerical implementation, is discussed and extended to a large scale analysis
of structures of technical interest. The academic context in which Koiter approach is
often traditionally confined are overcame and the accuracy and reliability of the method
are shown in real technical contexts.

REFERENCES

derivation of nonlinear structural models for beams and plates. \textit{Journal of Mechanics
