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A multi-scale modelling for analyzing the bending problem of plates composed by 
heterogeneous materials is presented. The macro-continuum is modeled by the non-linear 
formulation developed in [1] of the boundary element method (BEM) taking into account the 
consistent tangent operator (CTO) and based on Kirchhoff’s theory. The micro-scale is 
represented by the RVE (representative volume element) being its equilibrium problem solved 
by the finite element formulation presented in [2, 3] that takes into account the Hill-Mandel 
Principle of Macro-Homogeneity  while the volume averaging hypothesis of the strain and 
stress tensors is used to make the micro-to-macro transition. The microscopic equilibrium 
problem consists of, given the history of the macroscopic strain tensor, finding the field of 
displacement fluctuation such that, for each instant t, the RVE equilibrium equation is 
satisfied.  
 
In the numerical example a beam (defined as a narrow plate, see figure (1)) subjected to 
simple bending is analysed where is adopted a RVE with a void defined in its central (see 
figure (2a)). Note that despite of being thick, a beam can be analysed with the Kirchhoff’s 
theory as already shown in [4]. The two small sides of the plate are adopted simply supported 
and the two others, in the span direction, assumed to be free. Its geometry is given by: 
thickness t=20.0cm, width b=50.0cm, length l =200.0cm and an uniform distributed load 
g=1kN/cm2 is applied over all plate domain. The plate boundary was discretized into 16 
quadratic elements, while the domain moments are approached over 24 cells, for which the 
definition of 5 internal points is required as shown in Figure (1b). For the RVE, which is 
adopted square which length side equal to 1cm, 220 elements and 126 nodes have been used 
to discretize its domain (see Figure 2a). The material properties over the RVE are: Von Mises 
elasto-plastic criterion with isotropic hardening k=2000 kN/cm2, Poisson’s ratio ν=0.3; 
Young’s modulus E=20000 kN/cm2, yield stress σy=40.0kN/cm2. It is evaluated how the 
numerical response changes according to the adopted RVE boundary conditions which will be 
adopted as: (i) linear displacements, (ii) periodic displacement fluctuations and (iii) uniform 
boundary tractions (see [2, 3] for more details). The results are shown in Figure (2b), where 
can be observed that the limit load obtained considering uniform boundary tractions is 
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significantly smaller. The displacements related to the three different boundary conditions are 
very similar for 750.≤β , when the dissipative processes in the microstructure due to presence 
of the voids and ductile behaviour are not so strong. After that the analysis considering 
uniform tractions along the RVE boundary did not converged, while for the other two 
boundary conditions the analysis continued further. Thus the results confirm what had already 
been verified in other works (see [2, 3]): the linear boundary displacement gives the stiffest 
(most cinematically constrained) solution while the uniform boundary traction model 
produces the most compliant (least kinematically constrained). 
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Figure 1 – Simply supported beam – geometry and discretization 
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Figure 2 – a)Discretization of a RVE with a void defined in the centre b)Deflection at the 

central point of the beam, using different boundary conditions in the RVE 
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