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Rayleigh-Bénard convection in a couple of spherical boundaries has attracted much
attention for over a hundred years due to its relevance to geophysical tectonic movement
and magnetic field sustaining process under the earth’s crust[1]. Fig. 1 shows the con-
figuration of concentric dual spherical boundaries with radiuses, rin and rout, in which
Newtonian fluid with a constant volumetric heat production rate, β, the positive thermal
expansion coefficient, α, and kinematic viscosity, ν, is confined. The convection can be
induced by the opposing effects on the fluid of spherically centripetal gravity and centrifu-
gal buoyancy. Such a convection driven at high Rayleigh number could be even a model
describing motion in the outer core of the earth.

Investigating stability of axisymmetric thermal convective states, in case of non-rotation
and infinite Prandtl number, Zebib and others[2] reported that six different states of
steady convection can be realised around the critical Rayleigh number. In the present
work, we perform direct numerical simulation of thermal convection in terms of Galerkin
method so as to pursue structural change of these stable states from the infinite to finite
Prandtl number, Pr = 1. Provided that all fluid properties except for density are con-
stant in the context of the Boussinesq approximation and that the spherically centripetal
gravitational acceleration is proportional to the distance from the centre (γ is a constant
of proportionality), the following nondimensional governing equations describe the time
development of our system;

∇ · u = 0 ,

∂tu+ (u ·∇)u = −∇p+RaΘr +∇2u ,

P r(∂tΘ+ u ·∇2Θ) = rur +∇2Θ ,

where non-slip and isothermal boundary conditions are imposed at the boundaries for
velocity u and temperature disturbance Θ. It should be noted that the equations are
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Figure 1: Newtonian fluid is confined between
concentric dual spherical boundaries with ra-
diuses, rin and rout. A variety of thermal con-
vective states may emerge from the static state
via a supercritical bifurcation owing to spher-
ically centripetal gravity and centrifugal buoy-
ancy over the critical Rayleigh number.

Figure 2: Bifurcation diagram around the crit-
ical Rayleigh number, Rac = 12.1, for η = 0.5.
Principally, our numerical simulation traces
only stable states, which are illustrated by con-
tours of radial direction velocity, ur, at the in-
termediate radius, r = (rin+ rout)/2, in Merca-
tor projection.

determined only by the three dimensionless parameters, Rayleigh number, Ra, Prandtl
number, Pr and ratio of radiuses, η,

Ra =
αβγd6

νκ
, Pr =

ν

κ
, η =

rin
rout

,

where κ and d are thermal diffusion coefficient and the characteristic length of the system,
respectively. Half the distance of boundaries, (rout − rin)/2, is adopted as characteristic
length, so the critical Rayleigh number is Rac = 12.1 for η = 0.5 where the static state
loses its stability and simultaneously bifurcates to three different convective states, be-
cause of the multiplicity of spherical harmonics as to the instability of the static state [3].
Tremendous numerical efforts have been devoted to quest stable steady states, so that we
found that these convective states successively bifurcate to their “offsprings”, which are
illustrated in Fig. 2 as a family tree.
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