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In this abstract we will present the main strategies we followed in order to obtain ana-
lytically the exact expression of the mass matrix and its derivatives for the dynamics of
geometrically exact (GE) Reissner beams with the helical interpolation.
This GE beam model was firstly developped by Simo [?] and its main idea is to exploit the
geometric properties of the spaces appearing in the continuous formulation of the prob-
lem. Following Reissner beam kinematics the configuration of the beam can be expressed
through a function

H : I ⊂ R → SE(3)

u 7→ H(u) =

(
R(u) p(u)
0t 1

)
, (1)

where p ∈ R3 describes the position of the line of centroids and R(u) ∈ SO(3) the rotation
of the section at p(u). To define a displacement-based FEM, the interpolation choosen
here is the helical one (already presented in [?] but not with the formalism of SE(3)), i.e.

H(u) = Hi expSE(3)

(
u

Lij
logSE(3)

(
Hj

i

))
∀u ∈ [0, Lij ], (2)

where Hj
i = H−1

i Hj ∈ SE(3), Lij is the length of the element ij, u ∈ [0, Lij] is the material
coordinate on the element and Hk ∈ SE(3) is the position of the nodes k, k = i, j.
It is worth noting that this interpolator follows the main idea of GE beam models, is
left-invariant and, in contrast with the interpolator used by Simo in [?], it is objective.
As pointed out in [?], in displacement-based FE for beams, the mass matrix exhibits
nonlinearities and is not constant with respect to nodal positions, except in the case of
the absolute nodal coordinate method.
Assuming that the cross section is constant along the beam, the kinetic energy is

EC =
1

2

∫ Lij

0
T(u)t

(
X 0
0 µI3

)
T(u)du, (3)
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where X ∈ R3×3 is the inertia matrix of the cross section, I3 ∈ R3×3 the identity matrix,
µ the linear mass density and T = (ω,v) ∈ R6 the vector of material velocities defined as

dtH(u) := H−1(u)
dH(u)

dt
= T̂(u) =

(
ω̂ v
0 0

)
∈ se(3) , ω̂ =

 0 −ω3 ω1
ω3 0 −ω2

−ω1 ω2 0

. (4)

Using the choosen interpolation, T̂ has the following expression

T̂ = Ad
exp

(
− u

Lij
logHj

i

)T̂i,0
i +

u

Lij
d exp

(
u

Lij
logHj

i

)
d logHj

i

(
T̂j,0

j −AdHi
j
T̂i,0

i

)
. (5)

In order to find the mass matrix, we have to rewrite the kinetic energy as a quadratic
form on the material velocities at the nodes T̂k,0

k = H−1
k Ḣk , k = i, j , i.e.

EC =
1

2

(
Ti,0

i

Tj,0
j

)t

M(Hj
i , Lij)

(
Ti,0

i

Tj,0
j

)
, M ∈ R12×12. (6)

If we try to arrive at this form directly with a brute force approach, we quickly find heavy
and long expressions that rapidly become unmanageable even if the exponential map on
SE(3) and its derivatives have closed forms derived from Rodrigues’ formula.
Based on a deep insight into the different terms we have to deal with, our strategy consists
in defining two auxiliary functions:

α1(λ) =
1− cosλ

λ‖ωj
i‖

and α2(λ) =
λ− sinλ

‖ωj
i‖2λ

, (7)

where Ω̂j
i = log(H−1

i Hj) , Ωj
i = (ωj

i ,v
j
i ) ∈ R6 and λ = ‖ u

Lij
ωj

i‖. Thanks to these functions,
we can write every scalar term appearing in the integrals in EC as a polynomial in α1

and α2. It turns out that we can eliminate all the terms like αk
2 with k ≥ 2, reducing the

number of integrals we have to calculate. All these integrals can be written as polynomials
in β1 = α1(‖ωj

i‖) and β2 = α2(‖ωj
i‖). This strategy proves to be really efficient to calculate

and implement not only the mass matrix, but also its derivatives with respect to nodal
positions. Ongoing and future works include benchmarking of this FE and comparison
with other variants of this GE interpolator, especially in SO(3)× R3.
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