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The objective of this paper is to present the wave velocity dispersion produced by an efficient 
high-order step-by-step direct integration algorithm for flexural wave equation. The proposed 
algorithm is formulated in terms of two Hermitian finite difference operators of fifth-order 
local truncation error and it is unconditionally stable with no numerical damping presenting a 
fourth-order truncation error for period dispersion (global error). Although it is in competition 
with higher-order algorithms presented in the literature, the computational effort is similar to 
that of the classical second-order Newmark’s method [1]. 
 
The finite element method is used to solve a wide range of engineering problems including 
wave propagation in elastic media. As the finite element method is an approximation of a 
continuum medium, its employment to solve wave motion results in appendant dispersion [2]. 
It is known that numerical wave velocity dispersion normally occur in finite element 
solutions, when the wave equations are first semi-discretized in space by using Galerkin 
methodology and then numerically integrated in time. 
 
The classical Timoshenko´s flexural wave equations can be written as [3] 
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where v and   represent deflection and bending rotations, respectively; k, S, E, I, m and r 
represent the shear coefficient, the beam section area, the shear elasticity modulus, the second 
moment of area of the beam section and radius of gyration, respectively. The classical space 
derivative roman number notation as an exponent is employed [4], as well the time derivative 
by single dot. 
 
The integration in non-finite terms (wave solution) of equation (1) in terms of complex 
notation is given by 
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where i is the complex unit,   is the wave length, c is the wave speed, A and B are the 
deflection and bending rotation amplitudes of the wave which propagate in the positive 
direction, respectively.   
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The step-by-step integration algorithm considered in this paper is derived by considering the 
following coupled Hermitian operator [3]:  
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where u indicates the function to be integrated and t  is the time step. Integration in space of 
equation (1) by two node beam finite element method and integration in time using equation 
(3) after some algebraic manipulations for a given frequency gives the following typical 
fourth degree algebraic equation (eigen-value problem): 
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where n  is the numerical wave number, iA  are parameters which depend on trigonometric 

functions of t and the following mesh parameters 
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in which   is the element length, r is the radius of gyration of the section of the beam, E is the 
modulus of elasticity, G is the shear elasticity modulus a T t  , T is the wave period,

     and   is the wave length.  
 
To illustrate the numerical wave number dispersion let us consider a WF shape with the 
properties 11 2E 2.1x10 N / m , G E / 2.6 , 5 4I 3.89x10 m , r 0.15m and 37850Kg / m    
The results shown in Table 1 indicate that for frequency 10KHz the proposed method presents 
accuracy in competition with classical Newmark method. 
 
The author wishes to acknowledge FAPESP (São Paulo Research Foundation) for the 
financial support given to this research.   

Table 1 Numerical wave number 
  a=b  exact  Proposed  Newmark 

First spectrum 
wave 

100  27.8899  27.9140  27.8752 

50  27.9858  27.8313 

10  31.0968  26.7243 
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