ENERGY-STABLE TIME DISCRETIZATIONS FOR THE PHASE-FIELD CRYSTAL EQUATION

Philippe Vignal1,2, Lisandro A. Dalcin1,3, Donald L. Brown3, Nathan O. Collier4 and Victor M. Calo1,2

1 Center for Numerical Porous Media, King Abdullah University of Science and Technology
2 Material Science & Engineering, King Abdullah University of Science and Technology
3 Consejo Nacional de Investigaciones Científicas y Técnicas and Universidad Nacional del Litoral, Santa Fe, Argentina
4 Oak Ridge National Laboratory, Oak Ridge, Tennessee, USA
5 Applied Mathematics & Computational Science and Earth Science & Engineering, King Abdullah University of Science and Technology

Key words: High-performance computing, isogeometric analysis, phase-field crystal equation, crystal growth.

Modeling of phase-transitions has garnered a lot of interest in recent years, and the solution to these problems through the use of phase-field methods looks very promising. Unfortunately, the phase-field framework as a method, leads to nonlinear and high-order partial differential equations \cite{1}. These equations, not easily solved using standard numerical methods, have lead to interesting numerical algorithms to handle them, that look to ensure different problem-related properties such as conservation of mass and energy-stability. Among the methods that have been tried out in finite element settings, Isogeometric Analysis (IGA) \cite{2} has stood out for the ease with which the higher-order, globally continuous basis functions can be generated.

In this work, we analyze different possible discretizations using IGA to solve the phase-field crystal equation, a nonlinear, time-dependent, sixth-order partial differential equation. Using arguments from \cite{3}, we are able to prove energy-stability and second-order accuracy in time. Comparisons are done against the state of the art \cite{4}, and their behaviour in terms of convergence in a free-energy sense is analyzed. Implementation was done using PetIGA, a high performance Isogeometric Analysis framework. It is heavily based on PETSc, and designed to handle non-linear, time-dependent problems \cite{5}. Two-dimensional and three-dimensional examples are presented, involving crystalline growth.

REFERENCES

2007.

