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Uncertainty quantification and its propagation in structural dynamics is usually a sophis-
ticated task, which demands elaborate stochastic modelling and entails huge computa-
tion times ([3]). If nonlinearities are present, the computational demand is even higher.
Furthermore, most numerical stochastic models provide discrete samples as a solution,
whereas rather probability density distributions would be the quantities of interest. In
order to obtain probability density distributions from sample solutions, nested combi-
nations of stochastic models are required. These make error estimation of the solution
probability distribution very complicated. However, if the stochastic model is restricted
to a Markov process, the behaviour of nonlinear oscillators under stochastic excitation can
be modelled by the Fokker-Planck equation ([2]). In doing so, a transport equation for
the probability density function itself is obtained and must be numerically solved. Error
estimation for the solution of this deterministic equation is a standard task. Neverthe-
less, since the Fokker-Planck equation is of advection-diffusion type, it poses a challenge
regarding stability of the numerical solution, especially if the hyperbolic part is domi-
nant. Furthermore, the Fokker-Planck equation is defined on a high-dimensional space,
corresponding to the number of degrees of freedom of the underlying stochastic dynamical
system.

In order to accomplish the solution of the high-dimensional transient Fokker-Planck equa-
tion, a stable explicit numerical scheme, which allows for element-wise decoupling, has
to be established. Discontinuous Galerkin methods, as a higher order extension to finite
volume methods are very suitable for the solution of hyperbolic equations (see e.g. [1]).
The discontinuous finite elements are intrinsically defined element-wise, whilst the cou-
pling to neighbouring elements is established by inter-element fluxes. This allows for fully
element-wise decoupling of the solution which provides the possibility for element-wise
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parallelisation.

The Discontinuous Galerkin method has been implemented for arbitrary high-dimensional
Fokker-Planck equations with arbitrary high order polynomial approximations in each el-
ement. Efficient concepts for mesh generation in arbitrary dimensions and storage of high-
dimensional node-to-element and neighbourhood relations have been developed. Numeri-
cal integration over high-dimensional domains have been established, as well as the com-
putation of surface integrals and surface normals for the numerical inter-element fluxes.
With this explicit method, the solution of the high-dimensional system of equations is
obtained with an efficient use of computational resources.

Adaptive mesh refinement techniques should also be taken into account, since hanging
nodes fit well into the framework of the discontinuous Galerkin method. H-refinement
and p-refinement are likewise appropriate and should be implemented.
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