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The unstructured-grid version of the shock-fitting technique made its first appearance in
2009 [1] and has been developed since then: it has been successfully applied to 2D steady
flows featuring interacting shocks [2] and 3D steady flows with multiple, though not in-
teracting shocks [3].
Unstructured shock-fitting retains features of both the boundary˝(algorithmically sim-
ple) and floating˝(topologically more versatile) variants of the algorithm that had been
used in the structured grid setting: the fitted shock fronts are interior boundaries that
are free to float over a background mesh which is locally re-meshed to adapt to the actual
position of the shock front; a shock-capturing solver is used to discretize the governing
PDEs in smooth regions of the flowfield.
The use of unstructured grids allows to relieve most of the algorithmic difficulties encoun-
tered in the structured grid setting whilst keeping the key feature of the traditional˝shock-
fitting discretization, i.e. accuracy on coarse meshes.
Modularity is one of the key features of this newly developed unstructured shock-fitting
algorithm. Indeed, since the fitted shock fronts behave as interior boundaries, the CFD
solver can be used as a black box˝by the shock fitting algorithm and the same consid-
eration applies to the algorithm that is used for local re-meshing around the shock-front.
For instance, the technique had originally been developed using the in-house eulfs CFD
solver [4] and different public domain codes for volumetric and surface remeshing, such
as: triangle [5] in 2D and tetgen [6] and Yams [7] in 3D. Very recently, the CFD solver
has been replaced with the COOLFluiD[8, 9] code developed at VKI. Thanks to the high
modularity of the shock-fitting technique, this task has been accomplished at a very lim-
ited coding effort. Figure 1, which refers to the supersonic flow past a circular cylinder,
shows pressure iso-contours computed by CoolFluid in shock-capturing and shock-fitting
mode on the same coarse mesh. The comparison clearly highlights the improvements in
solution quality that shock-fitting enables.



R. Pepe et. al.

Figure 1: Supersonic flow past a 2D circular cylinder

In the near future, we plan to use the local remeshing technique specifically designed
by Zaide and Olliver-Gooch [10] to remesh the shock region. This will allow to improve
the performance of the shock-fitting technique and to broaden its range of application,
especially in the field of 3D flows.
In the full paper the integration of the shock-fitting algorithm with the COOLFluid solver
and the new mesh generation subroutines will be discussed and more examples of flow
computations will be shown.
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