ISOGEOMETRIC ANALYSIS AND HIGHER ORDER BEM FOR NONLINEAR NONSMOOTH BOUNDARY VALUE PROBLEMS FROM CONTACT MECHANICS

J. Gwinner

Institute of Mathematics, Department of Aerospace Engineering, University of the Federal Army Munich, D - 85577 Neubiberg, Germany, joachim.gwinner@unibw-muenchen.de

Key words: Isogeometric Analysis, HigherOrder BEM, Nonsmooth Boundary Value Problem, Contact Problems

Isogeometric analysis [1, 2] uses higher order non-uniform rational B-splines, respectively T-splines as ansatz functions. This leads to a nonconforming approximation when applied to nonlinear boundary value problems with unilateral constraints and other nonsmooth equations that arise in contact mechanics [3]. In this contribution we discuss how the recent numerical analysis of \(hp\)-BEM/FEM for this kind of problems [4, 5] can be extended to the ISO BEM. To this end we start from the variational formulation of contact problems as variational inequalities [3], employ the Galerkin method for discretization, and use Mosco set convergence [6] for the convergence analysis.

REFERENCES