A HIGHER-ORDER FINITE VOLUME METHOD BASED ON MOVING LEAST SQUARES FOR THE RESOLUTION OF THE INCOMPRESSIBLE NAVIER STOKES ON UNSTRUCTURED GRIDS

L. Ramírez¹*, X. Nogueira¹, S. Khelladi², J.C. Chassaing³, and I. Colominas¹

¹Group of Numerical Methods in Engineering, Dept. of Applied Mathematics, Universidade da Coruña. Campus de Elviña, 15071, A Coruña, Spain, luis.ramirez@udc.es

²Laboratoire de Dynamique des Fluides, Arts et Métiers ParisTech, 151 Boulevard de l'Hôpital. 75013 Paris, France, sofiane.khelladi@ensam.eu

³Sorbonne Universités, UPMC Univ Paris 06, CNRS, UMR7190, D'Alembert Institute, F-75005 Paris, France, jean-camille.chassaing@upmc.fr

Key Words: High-order methods, Incompressible flow, Moving Least Squares, Momentum Interpolation Method, Unstructured grids, Collocated grids.

In this work we present a new higher-order (>2) accurate finite volume method for the resolution of the incompressible Navier-Stokes equations on unstructured grids, based on the use of Moving Least Squares (MLS) approximants. With this method, third and fourth order accurate discretizations of the convective and viscous fluxes are obtained on collocated meshes by using a deferred correction approach. In addition, MLS is employed to design a new Momentum Interpolation Method that allows interpolations better than linear on any kind of mesh. The accuracy of the new method is evaluated by several steady and unsteady test cases.

REFERENCES

