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Figure 1: Spatial discretization by many particles.

Let ∆t be a sampling time. The position u, the velocity v, and the pressure p are computed
at time t = n ∆t . n = 0, 1, 2, · · · become digital times. Let U [n](ξ) be an approximate
value for u(n ∆t, ξ) , let V [n](ξ) be an approximate value for v(n ∆t, ξ) , let P [n](ξ)
be an approximate value for p(n ∆t, ξ) , and let Rho[n](ξ) be an approximate value for
ρ(n ∆t, ξ) .

The position U [n], the velocity V [n], and the pressure P [n] should satisfy the discrete
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time Navier-Stokes equation

V [n + 1] − V [n]

∆t
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µ
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∑
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U [n + 1] − U [n]

∆t
= V [n + 1] (2)

For these goal equations (1) and (2), the variables U [n + 1], V [n + 1], P [n + 1], and
Rho[n + 1] at next time n + 1 are computed from the variables U [n], V [n], P [n], and
Rho[n] at present time n , as follows.

The temporal velocity V ∗ and the temporal position U∗ are computed
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Comparing the discrete time Navier-Stokes equation (1), in order to recover the effect of
pressure P [n + 1] (unknown) to the left equation of the equations (3), we consider the
modifiers V ′ , U ′ and the mass density Rho∗(ξ) as

V [n + 1] = V ∗ + V ′ U [n + 1] = U∗ + U ′ (4)

where
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∆t
=

−1

Rho[n + 1]

∂P [n + 1]

∂U [n + 1]

U ′

∆t
= V ′ Rho∗(ξ) =

ρ0

det
(

∂U∗(ξ)
∂ξ

) (5)

By adding the equation (3) and the equation (5), we obtain the discrete time Navier-Stokes
equation (1) and (2).

Considering the temporal compressibility between between sampling times, we obtain the
following pressure Poisson equation∑

i=x,y,z
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j
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which is similar to the one proposed in [2].
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